
Incognito Ethereum Bridge
Audit

Smart Contract Audit:
Incognito Ethereum

Bridge
Prepared for Incognito • April 2021

v210429

1. Executive Summary

2. Introduction

3. Assessment
Vault
IncognitoProxy
Upgrades

4. Summary of Findings

5. Findings
IBE-001 Outdated Solidity version
IBE-002 Uses of require without error string
IBE-003 Unnecessary payable function
IBE-004 Invalid signatures accepted as signed by address(0)
IBE-005 Integer overflows in functions withdraw and submitBurnProof
IBE-006 Partially arbitrary external calls controllable by users
IBE-007 Free parameters in function execute controllable by front-runners
IBE-008 Ambiguous signatures in requestWithdraw and execute
IBE-009 Insufficient checks when swapping committees
IBE-010 Inconsistencies with committee swapping lead to race condition
IBE-011 Function claim in TransparentUpgradableProxy is not transparent

6. Disclaimer

© 2021 Coinspect 1

1. Executive Summary

In February 2021, Incognito engaged Coinspect to perform a source code review of the
smart contracts that comprise the Incognito-Ethereum bridge. The goal of the project was
to evaluate the security of the smart contracts.

The assessment was conducted on the master branch of the public git repository at
https://github.com/incognitochain/bridge-eth/tree/master/bridge/contracts as of commit
4879219669a38d601265582f815596b6775855b6 of January 6, and fixes were verified as of
commit 232fef72ac3e6bf4cd8e795df11818960099172b of March 22.

The off-chain components were out of scope for this assessment, and it is recommended
that they be audited in the future.

The following issues were identified during the assessment:

High Risk Medium Risk Low Risk

- 3 8

The three medium-risk issues include partially arbitrary calls from the Vault contract
controllable by users, insufficient checks when swapping committees in the
IncognitoProxy contract, and a race condition that can be triggered when swapping
committees. The other eight findings are low risk, but nevertheless we recommend fixing
them because some of them could potentially have a high impact if exploited (see the
impact field of each issue in section 5). As of April 8, all issues have been fixed and verified
except IBE-006 that will be considered for future improvements.

It is important to mention that the contracts are upgradeable; this means that they are not
truly autonomous and the Incognito organization has full power over the contracts and the
deposited funds. Upgradability allows the organization to fix bugs and potentially mitigate
ongoing attacks by pausing a contract, but at the same time it also poses a risk. Special care
should be taken with the admin keys that allow access to this functionality. It is also
recommended to consider resigning admin access in the future to make the contracts fully
autonomous or contemplate options for decentralized governance.

© 2021 Coinspect 2

https://coinspect.com
https://github.com/incognitochain/bridge-eth/tree/master/bridge/contracts

2. Introduction

The audit started on February 8 and was conducted on the master branch of the public git
repository at https://github.com/incognitochain/bridge-eth/tree/master/bridge/contracts as of
commit 4879219669a38d601265582f815596b6775855b6 of January 6. Fixes were verified
as of commit 232fef72ac3e6bf4cd8e795df11818960099172b of March 22.

The scope of the audit was limited to the following Solidity source files, shown here with their
latest sha256sum hash:

62cd5be9ebc888300bde5ab44129a5a65995a290edf6aca034aad283bac1d265 IERC20.sol

0f471c4a0d1d1b08aaa69de76938d9bbc218ce40323b10246d062fdf1769d9b1 incognito_proxy.sol

aadb09572636fca5346de029396d79a1c50eae49cf0e5187a7c2753d1a568bcc pause.sol

9893b4abe402131979cc7174ce64f8285d085a869d2df992489a362ae0b1e533 proxy.sol

6641afbf26a4b8839cad3269fe3d232d202c1b75e69852a26a512eae5f630574 transparentUpgraded.sol

2a25156260c05cb03bb3c89ebc168bd2b8cf0f6f61934b8369daf9cd71f54cd6 upgradableProxy.sol

98755abc8d49c808d2d20b33ba3c43fc634ec35240f02366ba676a1d46122675 vault.sol

© 2021 Coinspect 3

https://github.com/incognitochain/bridge-eth/tree/master/bridge/contracts

3. Assessment
The main contracts are:

- IncognitoProxy: stores beacon and bridge committee members of the Incognito
Chain, and other contracts can query this contract to check if an instruction is
confirmed on the Incognito Chain.

- Vault: responsible for deposits and withdrawals; it holds assets (Ether or ERC20
tokens) and emits events that the Incognito Chain interprets as minting instructions;
when presented with a burn proof created over at the Incognito Chain, it releases
the assets back to the user.

All contracts are specified to be compiled with the Solidity version 0.6.6, except
IncognitoProxy and AdminPausable that are compiled with Solidity 0.5.12. It is
recommended to update to a newer Solidity version. The latest version of the 0.6.x series is
6.6.12, and 0.5.17 for the 0.5.x series. Both contain numerous bug fixes and improvements.
(See IBE-001.)

The contracts compile without warnings. However, linting with solhint produces many
warnings and errors, most of them about aesthetic issues. Nevertheless, it is advisable to
review the output of solhint and improve the source code. Also, linting should be
incorporated into the development process.

The repository includes tests. It is recommended to make coverage reports (for example,
with the solidity-coverage tool) and make sure to add the necessary tests to achieve full
coverage and verify that during development, new tests are added as needed to always
ensure full coverage.

The reviewed Solidity code is well written and clear. Some comments, however, have
become outdated and should be corrected. For example, some comments say that some
functions require the Vault contract to be unpaused, but actually the new version of the
Vault contract is no longer pausable (pausing functionality was moved to the transparent
proxy instead). Also, the event UpdateIncognitoProxy is never emitted by the Vault

contract, and if it is not needed, it is recommended that it be removed from the source code.

The contracts contain multiple uses of require without an error string. This is problematic
for several reasons. For example, it makes it impossible to write unit tests that check certain
failure conditions. (It is possible for a test to verify that a determined function call produces
a revert, but it is not possible to know for sure that the revert happened due to the
condition being tested or for some other reason). It is advisable to always include an error
string in every require and always write tests that verify that the call is reverted in each
case that it should be reverted due to failing requirements. (See IBE-002.)

Vault

The function depositERC20 in the Vault contract is payable. This is unnecessary and
creates the risk that someone will call this function with ether and the funds will be lost
(see IBE-003). A similar problem happens with the receive function that, according to the

© 2021 Coinspect 4

comment, is intended to be called only from the previous vault. If so, it would be safer to
restrict it to accept calls only from prevVault, but this is not currently possible because it
also receives calls from other contracts called through the execute function.

The function signToAddress returns address(0) when the signature is invalid. Because of
this, the internal function verifySigData can return address(0) and then, if there were
any funds wrongly assigned to address(0), an attacker could call function
requestWithdraw with an invalid signature and withdraw the funds. Function
verifySigData should check the value returned by ecrecover and revert if it is
address(0), and BurnInstData should never be accepted if the field to is address(0).

(See IBE-004.)

The functions withdraw and submitBurnProof contain integer overflows when multiplying
the token amount by a power of 10 to convert the number of decimals. These are not easily
triggerable by an attacker since the data is signed by members of the committees and has
to pass checks done off-chain. However, it is advisable to fix it to avoid any potential
problems. (See IBE-005.)

The function execute allows anyone to make calls with the Vault as msg.sender. There
are some restrictions regarding the return values, so calls are not totally arbitrary; this is a
dangerous practice. It is recommended to restrict the calls as much as possible — for
example, by adding a whitelist of explicitly allowed destination addresses and function
signatures. Although the destination address and calldata are signed by the user and this
mitigates the risk of a third party attacking the user, there is still risk of a user attacking the
vault. For example, this mechanism allows a user to make the vault call an ERC20 contract.
With the current restrictions on the return values, it does not seem possible that a user
could perform this kind of attack to steal funds, at least with standard ERC20 contracts, but
since the system accepts arbitrary token contracts, this possibility cannot be ruled out. (See
IBE-006.)

Also, in function execute, the caller is free to choose parameters token and
recipientToken since they are not covered by the signature. This could potentially allow
an attacker front-running the user transaction to steal funds, depending on the
implementation of the particular contracts that are called. It is recommended to include
both the token and recipientToken parameters in the data that is required to be signed.
(See IBE-007.)

Furthermore, there is ambiguity between signed data for functions execute and
requestWithdraw, and a signature can be valid for both functions, potentially allowing
attackers to use a signature intended for one of the functions in a call to the other one. It is
recommended to avoid clashing by adding a header or a value indicating “type”
(requestWithdraw or execute) to the data that is hashed and signed. (See IBE-008.)

Note also that the function execute can increase asset balances and does not check limits
as do the deposit and depositERC20 functions (10**27 weis in the case of ether, and
10**18 including up to 9 decimals in the case of ERC20 tokens). The relevance of this issue
depends on the implementation details of off-chain and Incognito Chain components.

© 2021 Coinspect 5

IncognitoProxy

In the IncognitoProxy contract, when swapping bridge or beacon committees, the number
of members (variable numVals) should be required to be > 0. Otherwise, the new
committee would be empty, meaning it will not be possible to change it any more and the
funds in the vault will be locked. However, it would be possible to recover from this
problem as long as there is an admin set for the vault proxy that would be able to set a
new IncognitoProxy. (See IBE-009.)

In the function extractCommitteeFromInstruction, it should be required for each
member address to be different from 0. Otherwise, any invalid signature would look like a
valid signature from a legitimate member of the committee. It should also be checked that
there are no duplicate addresses or the repeated one would have more voting power than
the others. All this can also be enforced off-chain. (See also IBE-009.)

Also, if the new committee startBlock is older than the current block of the Incognito
Chain, some instructions already processed could become invalid after swapping a
committee, which could produce inconsistencies in the protocol. For example, if the latest
committee has startBlock 10, and the IncognitoProxy checks an instruction with height
20 signed by the committee it will accept it, but just before checking the instruction the
committee is swapped with a new committee with startBlock 15, the instruction could be
rejected. This is a race condition between committee swapping in the IncognitoProxy and
users calling withdraw and submitBurnProof in the Vault. (See IBE-010.)

Upgrades

The vault contract currently deployed in mainnet is upgradeable. It implements an
upgrading mechanism that involves first pausing the contract (which effectively prevents
any user operations including deposits, withdrawals, and calls to execute), then calling the
function migrate with the address of the newly deployed vault (a transparent proxy), and
then calling (one or more times) the function moveAssets with the list of assets to be
transferred to the new vault. The function moveAssets transfers ERC20 tokens or ether to
the new vault and then calls the function updateAssets in the new vault to update the
mapping totalDepositedToSCAmount. Only the admin address can call these functions to
perform the upgrade.

It is worth noting that the function moveAssets in the mainnet vault assumes that the new
vault does not have any ether or any token and transfers all assets without checking the
final balance has not increased beyond maximum values (10**27 weis in the case of ether,
and 10**18 including up to 9 decimals in the case of ERC20 tokens).

It is very important that the old vault remains paused forever after upgrading it to a new
version. No new deposits or any other user operations should be accepted by the old vault
once it has been upgraded.

The new version of the Vault contract implements upgradeability using transparent
proxies, following OpenZeppeling’s scheme for upgradeable contracts.

© 2021 Coinspect 6

The main differences between the mainnet vault and the new version of the Vault contract
is that the new version is not pausable and does not have an admin and a setter function for
the IncognitoProxy (this functionality has been moved from the logic contract to the
transparent proxy itself).

Another subtle difference is that the new version of the Vault contract checks that the
length of the burn instruction is >= 130 before calling the function parseBurnInst.
However, it is recommended to move this check to the parseBurnInst function itself.
The proxy contract is implemented in TransparentUpgradeableProxy that inherits from
UpgradeableProxy that in turn inherits from Proxy. The functionality of the
AdminPausable contract has been implemented in the TransparentUpgradeableProxy. It
is worth mentioning that the new pausing functionality behaves differently from the
original AdminPausable because pausing the proxy now causes all function calls to revert
(instead of specific functions as before). Also, the function claim has been implemented in
such a way that it is not transparent. (See IBE-011.)

Finally, it is recommended to test the upgrade on a fork of mainnet before performing the
actual upgrade. This is easy to do using ’ganache-cli --fork’ or with hardhat’s forking
feature.

© 2021 Coinspect 7

4. Summary of Findings

ID Description Risk Fixed
IBE-001 Outdated Solidity version Low ✔

IBE-002 Uses of require without error string Low ✔

IBE-003 Unnecessary payable function Low ✔

IBE-004 Invalid signatures accepted as signed by address(0) Low ✔

IBE-005 Integer overflows in functions withdraw and
submitBurnProof

Low ✔

IBE-006 Partially arbitrary external calls controllable by users Medium ✘

IBE-007 Free parameters in function execute controllable by
front-runners

Low ✔

IBE-008 Ambiguous signatures in requestWithdraw and
execute

Low ✔

IBE-009 Insufficient checks when swapping committees Medium ✔

IBE-010 Inconsistencies with committee swapping lead to
race condition

Medium ✔

IBE-011 Function claim in TransparentUpgradableProxy is not
transparent

Low ✔

© 2021 Coinspect 8

5. Findings

IBE-001 Outdated Solidity version

Total Risk
Low

Fixed
✔

Impact
Low

Likelihood
-

Location
*.sol

Description

Currently, the contract code specifies with the pragma statement that it is meant to be built
with a version of the Solidity compiler older than the latest production release. Newer
versions have added additional warnings that can help to detect problems, solve bugs, and
enforce new rules to enhance security.

All contracts are specified to be compiled with Solidity version 0.6.6 except IncognitoProxy
that is compiled with Solidity 0.5.12.

Recommendation

It is recommended to update to a newer Solidity version. The latest version of the 0.6.x
series is 6.6.12 and 0.5.17 for the 0.5.x series, and both contain numerous bug fixes and
improvements.

Status

Fixed in commit 2596f1e19c14ccd6fae12ceb77c65c0e331d3199, now using version
0.6.12.

© 2021 Coinspect 9

IBE-002 Uses of require without error string

Total Risk
Low

Fixed
✔

Impact
Low

Likelihood
-

Location
incognitoProxy.sol, vault.sol, upgradableProxy.sol,
transparentUpgraded.sol

Description

The contracts contain multiple uses of require without an error string. This is problematic
for several reasons. For example, it makes it impossible to write unit tests that check certain
failure conditions. In other words, it is possible for a test to verify that a determined function
call produces a revert, but it is not possible to know whether the revert happened due to
the condition being tested or for some other reason.

Recommendation

It is advisable to always include an error string in every require and always write tests
that verify that the call is reverted in each case that it should be reverted due to the
corresponding failing requirements.

Status

Fixed in commit 2596f1e19c14ccd6fae12ceb77c65c0e331d3199.

© 2021 Coinspect 10

IBE-003 Unnecessary payable function

Total Risk
Low

Fixed
✔

Impact
High

Likelihood
Low

Location
vault.sol

Description

The function depositERC20 in the Vault contract is payable:

function depositERC20(address token, uint amount, string calldata incognitoAddress)

external payable nonReentrant {

[...]

This is unnecessary and creates the risk that someone will call this function with ether and
the funds will be lost.

Recommendation

Remove the payable modifier from the depositERC20 function.

Status

The payable modifier was removed from the depositERC20 function in commit
2596f1e19c14ccd6fae12ceb77c65c0e331d3199.

© 2021 Coinspect 11

IBE-004 Invalid signatures accepted as signed by address(0)

Total Risk
Low

Fixed
✔

Impact
Low

Likelihood
Low

Location
vault.sol

Description

The function signToAddress returns address(0) when the signature is invalid. Because of
this, the internal function verifySigData can return address(0) and then, if there were
any funds wrongly assigned to address(0), an attacker could call function
requestWithdraw with an invalid signature and withdraw the funds.

Recommendation

Function verifySigData should check the value returned by ecrecover and revert if it is
address(0).

Also, consider rejecting BurnInstData if the field to is address(0). For example, change
the function parseBurnInst to revert if to is 0. Transfers to the zero address are not
defined in the ERC20 standard, and ERC20 implementations are inconsistent in regard to
this (some implementations revert, but not all of them).

Status

Commit 2596f1e19c14ccd6fae12ceb77c65c0e331d3199 fixed function verifySigData.

© 2021 Coinspect 12

IBE-005 Integer overflows in functions withdraw and submitBurnProof

Total Risk
Low

Fixed
✔

Impact
High

Likelihood
Low

Location
vault.sol

Description

Functions withdraw and submitBurnProof contain integer overflows:

uint8 decimals = getDecimals(data.token);

if (decimals > 9) {

data.amount = data.amount * (10 ** (uint(decimals) - 9));

}

If data.amount is very big, this multiplication would overflow, producing a result that is
less than expected, potentially leading to inconsistencies and loss of funds.

However, these integer overflows are not easily triggerable by an attacker since the data is
signed by members of the committees and has to pass checks done off-chain.

Recommendation

It is advisable to fix these integer overflows to avoid any potential problems and not only
rely on off-chain checks. Use safeMul for the multiplication instead of *.

Status

Fixed in commit 2596f1e19c14ccd6fae12ceb77c65c0e331d3199.

© 2021 Coinspect 13

IBE-006 Partially arbitrary external calls controllable by users

Total Risk
Medium

Fixed
✘

Impact
High

Likelihood
Low

Location
vault.sol

Description

The function execute() allows anyone to make calls with the Vault as msg.sender. There
are some restrictions regarding the return values, so calls are not totally arbitrary; this is a
dangerous practice. It is recommended to restrict the calls as much as possible. For
example, add a whitelist of explicitly allowed destination addresses and function
signatures. Although the destination address and calldata are signed by the user and this
mitigates the risk of a third party attacking the user, there is still risk of a user attacking the
vault. For example, this mechanism allows a user to make the vault call an ERC20 contract.
With the current restrictions on the return values, it does not seem possible that a user
could perform this kind of attack to steal funds, at least with standard ERC20 contracts, but
since the system accepts arbitrary token contracts, this possibility cannot be ruled out.

Recommendation

It is advisable to restrict the contracts and functions that can be called through the execute

function. One possibility is to add whitelists of allowed destination addresses and function
signatures. It could also be possible to redesign the execute mechanism to make the
external call from another contract, a “call forwarder” different from the vault that does not
hold all the user’s funds.

Status

It is the intention of the Incognito team to allow arbitrary external calls so that every smart
contract developer can integrate his/her dApps with the Incognito platform.

Whitelisting as suggested by Coinspect will be taken into account for future improvements.

© 2021 Coinspect 14

IBE-007 Free parameters in function execute controllable by front-runners

Total Risk
Low

Fixed
✔

Impact
High

Likelihood
Low

Location
vault.sol

Description

In function execute, the caller is free to choose parameters token and recipientToken

since they are not covered by the signature:

function execute(

address token,

uint amount,

address recipientToken,

address exchangeAddress,

bytes calldata callData,

bytes calldata timestamp,

bytes calldata signData

) external payable nonReentrant {

//verify ower signs data from input

address verifier = verifySignData(abi.encode(exchangeAddress, callData,

timestamp, amount), signData);

[...]

This could potentially allow an attacker front-running the user transaction to steal funds,
depending on the implementation of the particular contracts that are called.

Recommendation

It is recommended to include both the token and recipientToken parameters in the data
signed by the user.

Status

Fixed in commit 2596f1e19c14ccd6fae12ceb77c65c0e331d3199.

© 2021 Coinspect 15

IBE-008 Ambiguous signatures in requestWithdraw and execute

Total Risk
Low

Fixed
✔

Impact
High

Likelihood
Low

Location
vault.sol

Description

There is ambiguity between signed data for functions execute and requestWithdraw. A
signature can be valid for both functions, potentially allowing attackers to use a signature
intended for one of the functions in a call to the other one.

Recommendation

An actual attack seems unlikely because it would be hard to avoid a revert due to failing
requirements. However, the fix is worthwhile because it is very simple and would rule out
any possibility of exploitation.

It is recommended to avoid clashing by adding a header or a value indicating “type”
(requestWithdraw or execute) to the data that is hashed and signed.

Status

Fixed in commit 2596f1e19c14ccd6fae12ceb77c65c0e331d3199.

© 2021 Coinspect 16

IBE-009 Insufficient checks when swapping committees

Total Risk
Medium

Fixed
✔

Impact
High

Likelihood
Low

Location
incognito_proxy.sol

Description

In the IncognitoProxy contract, when swapping bridge or beacon committees with
functions swapBridgeCommittee or swapBeaconCommittee, the number of members
(variable numVals) is not required to be > 0. If an empty committee is set, it becomes
impossible to change the committee any more because it would require at least one
member signature. Also, for the same reason, any burn instruction would be rejected, and
the funds in the vault would be locked.

However, it is possible to recover from this situation as long as there is an admin set for the
vault proxy because the admin would be able to set a new IncognitoProxy.

Also, the function extractCommitteeFromInstruction does not check that none of the
members of the new committee is address(0). If a member is address(0), a signature
from that member is trivially forgeable because an invalid signature would look as if signed
by address(0). This is also possible because the function verifySig does not check the
return value of ecrecover is not address(0).

Furthermore, there are no checks for duplicated members. If a member appeared in a
committee more than once, it would have more “voting power” than the other members and
would invalidate the requirement of a valid signature of at least two-thirds of the members.

Recommendation

Although all these checks could be done off-chain, it is also recommended to include the
checks in the IncognitoProxy contract and not rely solely on off-chain checks.

Status

Commit 2596f1e19c14ccd6fae12ceb77c65c0e331d3199 and commit
a4f86cea21eb7a52e42ba0cbc1260284eca2d87c add a requirement for new committees to
be nonempty and fixes function verifySig to reject address(0) as a valid signer.

The contract still accepts address(0) as a committee member, although now that
verifySig rejects address(0), this cannot be used to forge instructions. Committees with
duplicated members are also still accepted. The responsibility to avoid pathological
committee swaps lies on the current committee.

© 2021 Coinspect 17

IBE-010 Inconsistencies with committee swapping lead to race condition

Total Risk
Medium

Fixed
✔

Impact
High

Likelihood
Low

Location
incognitoProxy.sol

Description

When swapping bridge or beacon committees in the IncognitoProxy contract, if the new
committee startBlock is older than the current block of the Incognito Chain, some
instructions already processed could become invalid, which could produce inconsistencies in
the protocol.

For example, if the latest committee has startBlock 10 and the IncognitoProxy checks
an instruction with height 20 signed by the committee, it will accept it. But if just before
checking the instruction the committee is swapped with a new committee with startBlock

15, the instruction could be rejected. This produces a race condition between committee
swapping in the IncognitoProxy and users calling withdraw and submitBurnProof in the
Vault.

Recommendation

It is recommended to make changes in committee swapping to avoid race conditions if
possible or provide mitigations in case this race condition is triggered. When swapping
committees, the new startHeight should be higher than the block height of any
instruction already signed by the current committee. Otherwise, an approved instruction
could become invalid.

Status

Commit f921e4c099f090363735c13bc7cdae3a4546bf1f introduces changes that force
committee swap instructions to be fed into the contract in block height order. It is still
important for new committees to have a startHeight higher than the block height of any
instruction already signed by the current committee so far, and this can be enforced
off-chain.

© 2021 Coinspect 18

IBE-011 Function claim in TransparentUpgradableProxy is not transparent

Total Risk
Low

Fixed
✔

Impact
Low

Likelihood
Low

Location
transparentUpgaded.sol

Description

The TransparentUpgradableProxy contract implements the transparent proxy pattern. All
external functions are supposed to be visible only to the admin, and a call from any other
address is delegated to the logic contract (Vault in this case).

The function claim breaks this pattern because it is visible to any address, and if the logic
contract implemented this function, it would not be visible in the proxy contract:

function claim() external {

require(msg.sender == _successor(), "TransparentUpgradeableProxy: unauthorized");

emit Claim(_successor());

_setAdmin(_successor());

}

Recommendation

It is recommended to make this function transparent by making it visible only to the
successor:

function claim() external {

if(msg.sender == _successor()) {

emit Claim(_successor());

_setAdmin(_successor());

} else {

_fallback();

}

}

Status

Fixed in commit 2596f1e19c14ccd6fae12ceb77c65c0e331d3199.

© 2021 Coinspect 19

6. Disclaimer

The information presented in this document is provided “as is” and without warranty.
Source code reviews are a “point in time” analysis, and as such, it is possible that something
in the code could have changed since the tasks reflected in this report were executed. This
report should not be considered a perfect representation of the risks threatening the
analyzed system.

© 2021 Coinspect 20

