

© Coinspect 2025 1 / 18

VeChainThor Galactica
Source Code Audit

Version: v250505 Prepared for: Vechain Foundation May 2025

Security Assessment

1. Executive Summary
2. Summary of Findings

2.1 Findings where caution is advised
2.2 Solved issues & recommendations

3. Scope
3.1 Fixes review

4. Assessment
4.1 Security assumptions

5. Detailed Findings
VCT�001 � Blocklisted account can use VTHO
VCT�002 � HTTP Client has no timeout

© Coinspect 2025 2 / 18

VCT�003 � A hash result of zero panics the chain
VCT�004 � A zero-gas transaction would panic the
chain
VCT�005 � A well-positioned attacker can manipulate
COM() vote of block

6. Disclaimer

© Coinspect 2025 3 / 18

1. Executive Summary
In April 2025, VeChain Foundation engaged Coinspect to perform a Source Code
Audit of the VeChainThor Blockchain Galactica Update. The objective of the
project was to evaluate the security of the update.

VeChainThor is an EVM-compatible blockchain focused on being sustainable by
offering low-cost transactions; a two-token model with one token specifically for
gas; delegations allowing a user to pay for the fees of another and clauses,
transactions with multiple operations that are either successful as a group or
outright rejected.

Solved Caution Advised Resolution Pending

High
0

High
0

High
0

Medium
1

Medium
0

Medium
0

Low
0

Low
1

Low
0

No Risk
3

No Risk
0

No Risk
0

Total

4
Total

1
Total

0

This report contains 4 issues, one of which is of medium severity and details how
a blocklisted account can still use VTHO to sponsor transactions. The rest of the
findings are of low severity or informational. The VeChain team has fixed the
medium severity issue while acknowledging the rest.

https://vechain.org/
https://coinspect.com/

© Coinspect 2025 4 / 18

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.1 Findings where caution is advised

Issues with risk in this list have been addressed to some extent but not fully
mitigated. Any future changes to the codebase should be carefully evaluated to
avoid exacerbating these issues or increasing their probability.

Findings with a risk of None pose no threat, but document an implicit assumption
which must be taken into account. Once acknowledged, these are considered
solved.

Id Title Risk

VCT�002 HTTP Client has no timeout Low

2.2 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

VCT�001 Blocklisted account can use VTHO Medium

VCT�003 A hash result of zero panics the chain None

VCT�004 A zero-gas transaction would panic the chain None

VCT�005 A well-positioned attacker can manipulate `COM��` vote
of block None

© Coinspect 2025 5 / 18

3. Scope
The review started on April 7th 2025 and was scheduled for 3 weeks.

The scope was set to be the repository at https://github.com/vechain/thor at
commit dda032fae6bebdb6e8302edfc7d0662f20c468d9, the HEAD of the branch
release/galactica when the review started. The review was a differential review
dealing only with the changes between the master branch and the
release/galactica branch at the point when the review started. The HEAD of master
at the time was 855ae30a4ddccf6cbabc8a184678cbbafd265fb9.

Thus, the scope was set as the diff given by git diff
855ae30a4ddccf6cbabc8a184678cbbafd265fb9
dda032fae6bebdb6e8302edfc7d0662f20c468d9.

3.1 Fixes review

The fixes review analyzed commit 35937fcfe79afbf4f1ecceb93746e2f7378b177b for
the fix to VCT-001. The rest of the issues were Acknowledged by the VeChainThor
team.

© Coinspect 2025 6 / 18

4. Assessment
VeChainThor is a L1-blockchain with a proof-of-authority consensus mechanism.
There are 101 validators that are identified by VeChain.

The specific changes in scope for this review were related to the Galactica
hardfork, which introduced a new EIP�1559-like fee market to VeChain. The full
specification is described in VIP�251. This introduces a BaseFee as a block header
field and changes the rewards for block producers: the proof-of-work of
transactions is now ignored, and the full reward (priority fee) of transactions is
sent to the miners. The BaseFee is burned, as in Ethereum.

The diff also includes a new envelope format for transactions. The new format is
in-use already for new VIP�251 transactions, but it allows new transactions types
to be introduced without breaking changes. The specification is in VIP�252.

Another relevant VIP is VIP�242. These are changes made to maintain EVM-
compatibility and allow any contract written for Ethereum to run on VeChainThor: it
introduces the BASEFEE and PUSH0 opcodes, rejection of contracts starting with
0xEF and changes to the gas cost of the alt_bn128 and modexp precompiled
contracts.

Lastly, txClauseIndex() and txClauseCount() were added to the Extension contract
�VIP�250�.

For the review, Coinspect considered the changes related to VIP-251 as the most
critical: the VeChainThor project differs from Ethereum gas handling due to its
dual-token model with a token (VETHO) dedicated exclusively to paying for gas.
Coinspect looked for potential logic bugs stemming from this difference, as well
as implementation bugs such as integer overflows.

VIP-252 was also relevant in the threat model: Coinspect look specially for
tampering of transactions due to insecure signatures, as well as potential denial-
of-service attacks due to the new serialization logic.

VIP-242 was reviewed for Ethereum compatibility and potential differences that
would lead to vulnerabilities.

VIP-250 is a smaller change that adds only two view functions to a Solidity
contract. Nevertheless, the calls are dispatched to native code, so Coinspect
reviewed is looking for potential panics or mismatches between the expectations
of solidity and go code.

The implementation of the Galactica features involved substantial refactoring,
especially concerning transaction representation and serialization. While drawing

https://github.com/vechain/VIPs/blob/master/vips/VIP-251.md
https://github.com/vechain/VIPs/blob/master/vips/VIP-252.md
https://github.com/vechain/VIPs/blob/master/vips/VIP-242.md
https://github.com/vechain/VIPs/blob/master/vips/VIP-250.md

© Coinspect 2025 7 / 18

clear inspiration from Ethereum standards like EIP�1559 and EIP�2718, the
adaptation to VeChainThor's unique architecture (dual-token, PoA� required careful
integration. The review evaluated the correctness of these adaptations,
particularly where VeChainThor's implementation deviates from or interacts with
existing mechanisms like fee delegation or the VTHO economy.

Most of the other features of VeChain closely mirror those of Ethereum. One
important distinction is in the replay and reordering protection of transactions.
While Ethereum uses nonces to prevent replay and arbitrary reordering, VeChain
uses a DependsOn field to prevent reordering, and rejects transactions with the
same txid to prevent replay. Users should be aware of this difference, both
because transactions without a DependsOn field are susceptible to be reordered by
a block producer, and also because it leads to slight different calculations of
contract addresses via CREATE and CREATE2 opcodes in certain situations.

Lastly, Coinspect noted that API protections where missing in the project. The risk
of an attacker exploiting this is documented in VCT-006. Node operators are
encouraged to expose their node to users via a reverse proxy or implement other
strategies that allow them to set rate limits.

4.1 Security assumptions

At least 2/3�1 of block producers are assumed non-byzantine and available.

© Coinspect 2025 8 / 18

5. Detailed Findings

VCT�001
Blocklisted account can use VTHO

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

thor/consensus/validator.go

Description

A blocklisted attacker can still use their VTHO tokens as the delegator of a
secondary account, partially bypassing VeChainThor's consensus-level
blocklist.

While current validations check that the origin of a transaction is not
blocklisted, a blocklisted user can partially bypass this validation and still use
their VTHO by sponsoring another accounts transaction.

© Coinspect 2025 9 / 18

The attacker would have to:

 Have a blocklisted account with VTH0
 Create a secondary account
 Sponsor the secondary account with the blocklisted account

The root cause is in the validateBlockBody method of the validator package:

for _, tr := range txs {
 origin, err := tr.Origin()
 if err != nil {
 return consensusError(fmt.Sprintf("tx signer unavailable: %v",
err))
 }

 if header.Number() >= c.forkConfig.BLOCKLIST &&
thor.IsOriginBlocked(origin) {
 return consensusError(fmt.Sprintf("tx origin blocked got
packed: %v", origin))
 }

Recommendation

Check that the delegator of the transaction is not a blocklisted account.

Status

Fixed in commit 35937fcfe79afbf4f1ecceb93746e2f7378b177b. Each transaction's
delegator is now checked against the blocklist and rejected if present. Note
the fix assumes research has been conducted to make sure that no
transaction of this characteristic was ever present in the chain.

© Coinspect 2025 10 / 18

VCT�002
HTTP Client has no timeout

Status

Caution Advised

Resolution

Acknowledged

Risk
Low

Impact
Low
Likelihood
Low

Location

thor/thorclient/thorclient.go

Description

The thorclient::Client::New() uses a a http.DefaultClient as the underlying
HTTP client. Golang's http.DefaultClient has no timeout. This means users
that use New() are at risk of having their connection to services hang if the
service is non-responding.

Recommendation

Set a timeout in the http.DefaultClient before wrapping it in the
thorclient::Client::Client struct.

Status

© Coinspect 2025 11 / 18

Acknowledged.

© Coinspect 2025 12 / 18

VCT�003
A hash result of zero panics the chain

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

thor/thorclient/thorclient.go

Description

If the Blake2b digest used in the evaluateWork function to calculate the work
done on a transaction results in the zero-hash, the node will crash due to
division by zero on big integers. This issue is only informational, as the
likelihood of a correct Blake2b resulting in the zero-hash is negligible.
Nevertheless, a check should be added to guard against potentially faulty-
implementations and for theoretical correctness.

The root cause of the issue can be seen in tx_legacy.go, in the line
r.Div(math.MaxBig256, r). If r == 0, the BigInt division will panic.

func (t *legacyTransaction) evaluateWork(origin thor.Address)
func(nonce uint64) *big.Int {

hashWithoutNonce := t.hashWithoutNonce(origin)

return func(nonce uint64) *big.Int {
var nonceBytes [8]byte

© Coinspect 2025 13 / 18

binary.BigEndian.PutUint64(nonceBytes[:], nonce)
hash := thor.Blake2b(hashWithoutNonce[:],

nonceBytes[:])
r := new(big.Int).SetBytes(hash[:])
return r.Div(math.MaxBig256, r)

}
}

Recommendation

Add a check to avoid dividing by zero.

Status

Acknowledged.

© Coinspect 2025 14 / 18

VCT�004
A zero-gas transaction would panic the
chain

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

thor/thorclient/thorclient.go

Description

An attacker that can bypass other validations and sneak-in a zero-gas
transaction so that it reaches the OverallGasPrice message can panic a node
due a division by zero. Note that OverallGasPrice is called not only from
consensus-related code but also from the mempool, where validations are
more lax. While Coinspect found no way to practically exploit this due to
previous checks in the flow, adding a check for zero before dividing is
recommended to improve defense in depth.

The root cause can be seen in OverallGasPrice in the line just before the
return:

// OverallGasPrice calculate overall gas price.
// overallGasPrice = gasPrice + baseGasPrice * wgas/gas.
func (t *Transaction) OverallGasPrice(baseGasPrice *big.Int, provedWork

© Coinspect 2025 15 / 18

*big.Int) *big.Int {
...
x := new(big.Int).SetUint64(wgas)
x.Mul(x, baseGasPrice)
x.Div(x, new(big.Int).SetUint64(t.body.gas()))
return x.Add(x, gasPrice)

}

Recommendation

Add a check to avoid dividing by zero.

Status

Acknowledged.

© Coinspect 2025 16 / 18

VCT�005
A well-positioned attacker can manipulate
`COM��` vote of block

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

thor/thorclient/thorclient.go

Description

An attacker can listen for a new block from a valid block producer, freely
change its COM() boolean, and broadcast the new block over the network. A
receiver of the block can either see first the original or the modified block.
Receivers will ignore the second block received.

The root cause of the issue is that the signingFields of the header do not
include the extension field in pre-Galactica blocks:

func (h *Header) signingFields() []any {
fields := []any{

h.body.ParentID,
h.body.Timestamp,
h.body.GasLimit,
h.body.Beneficiary,

© Coinspect 2025 17 / 18

h.body.GasUsed,
h.body.TotalScore,

&h.body.TxsRootFeatures,
h.body.StateRoot,
h.body.ReceiptsRoot,

}
if h.body.Extension.BaseFee != nil {

fields = append(fields, &h.body.Extension)
}
return fields

}

If an attacker were to exploit this, it would impact the justification process of
the 1-bit consensus mechanism. This issue is informational only because the
Galactica fork already contains a fix for the problem: if the BaseFee of a block
is not null (a requirement for Galactica blocks), the whole extension field is
signed:

if h.body.Extension.BaseFee != nil {
 fields = append(fields, &h.body.Extension)
}

An attacker can also exploit the same issue with regards to the Alpha slice of
the extension struct.

Recommendation

Consider scanning the blockchain for this particular scenario to see if it has
already been exploited.

Consider a hot-fix to add signing to the extension field independently of the
Galactica update.

Status

Acknowledged. This issue will be non-exploitable as soon as the Galactica
update is live.

© Coinspect 2025 18 / 18

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

