

© Coinspect 2025 1 / 19

wXTM Tari Bridge
Smart Contract Audit

Version: v250528 Prepared for: Tari May 2025

Security Assessment

1. Executive Summary
2. Summary of Findings

2.3 Solved issues & recommendations

3. Scope
4. Assessment

4.1 Security assumptions
4.2 Decentralization
4.3 Code quality & Testing

5. Detailed Findings
WXTM�001 � Adversary can steal bridged funds due
to single confirmation required

© Coinspect 2025 2 / 19

WXTM�002 � Unchecked safeTransferFrom return
value
WXTM�003 � Zero-value transfers allowed
WXTM�004 � Using reinitializer instead of initializer
modifier
WXTM�005 � Unused contract implementation

6. Disclaimer

© Coinspect 2025 3 / 19

1. Executive Summary
In May 2025, Tari engaged Coinspect to conduct a Smart Contract Security Audit
of the wXTM bridge, which includes an Omnichain Fungible Token �OFT�
implementation and the bridge contract.

The wXTM bridge enables users to wrap and unwrap Tari's XTM tokens into OFT
tokens on any EVM-compatible chain where the OFT is deployed, and vice versa.
The OFT setup allows seamless bridging of wrapped tokens across chains allowed
by Tari.

Solved Caution Advised Resolution Pending

High
0

High
0

High
0

Medium
2

Medium
0

Medium
0

Low
0

Low
0

Low
0

No Risk
3

No Risk
0

No Risk
0

Total

5
Total

0
Total

0

As a result, Coinspect identified two medium-risk issues: one that could allow an
attacker to steal funds due to the use of a single confirmation, and another
involving the lack of return value checks on ERC20 transfers, which could enable
token theft in the event of a contract upgrade.

The audit also flagged three informational issues: zero-value transfers being
permitted, use of reinitializer instead of initializer, and the presence of an
unused contract implementation.

https://www.tari.com/
https://coinspect.com/

© Coinspect 2025 4 / 19

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

WXTM�001 Adversary can steal bridged funds due to single
confirmation required Medium

WXTM�002 Unchecked safeTransferFrom return value Medium

WXTM�003 Zero-value transfers allowed None

WXTM�004 Using reinitializer instead of initializer modifier None

WXTM�005 Unused contract implementation None

© Coinspect 2025 5 / 19

3. Scope
The scope was set to be the repository at https://github.com/tari-project/wxtm-
bridge-contracts on commit 1f379c162027fee583595ee506fb3375a9328a83.
During the review, the Tari team shared commit
ca4339efcfab8a908bcc67bbc6575e77e64c93ed, which Coinspect used for a
differential analysis.

Specifically, the following contracts were targeted:

8fbfe3c5c1ef43d61066f95f6b272ddb701a821b85812d2cca01fd6e7521edc1 wXTM.sol
b7bca7b99d0b35dc1ec86ec4bdc00fe4eaf55d0906a52a54d343783dd75805a3
wXTMBridge.sol
948e7db74b4bedae0476b709a8348c8c64d26015cfbe93d9d0a9b282dbe1a77a
wXTMController.sol

https://github.com/tari-project/wxtm-bridge-contracts

© Coinspect 2025 6 / 19

4. Assessment
The contracts outlined in the previous section enable the wrapping and bridging
of Tari XTM tokens. Each repository or module is described in detail in the
sections that follow.

Notably, the components reviewed appear to be under active development.
Coinspect did not find any configurations indicating an imminent deployment to
production.

The wXTM Tari bridge enables wrapping Tari XTM tokens for use on EVM-
compatible chains which can later be used in cross-chain transfers. To achieve
this, Tari employs an upgradeable Omnichain Fungible Token �OFT� that builds on
the ERC�20 standard and integrates LayerZero's cross-chain capabilities.

All initial mints—intended exclusively on Ethereum—are expected to be controlled
by a the wXTMController contract, which defines different roles for minting as
explained in section 4.2. When bridging from Tari to an EVM chain, XTM tokens
will be locked in a Minotari wallet on Tari, which will allow calling mint on the
corresponding wXTM contract. Although the Tari team plans to mint tokens only on
Ethereum, the mint function exists on any target chain deploying this contract. For
transfers from EVM back to Tari, users call the bridgeToTari* functions, which
burn tokens on the source chain and emit an event. This event is indexed by Tari-
controlled infrastructure, which then releases the equivalent tokens on the Tari
chain to the desired address.

On top of this, the wXTM contract implements EIP�3009, enabling gas-less transfers
through off-chain signed authorizations.

When minting tokens, consider the amount of decimals used by the OFT token. By
default, a LayerZero OFT uses the standard ERC�20 precision of 18 decimals for
its on-chain balances, and a sharedDecimals value of 6 for cross-chain transfers.

Coinspect noted that the gas limit in EVM_ENFORCED_OPTIONS is set to 80,000 and
recommends profiling gas consumption on each destination chain to verify proper
functionality.

4.1 Security assumptions

The review proceeded under these assumptions:

© Coinspect 2025 7 / 19

The OFT delegate, contract owner, and proxy admin remain uncompromised
and are governed by a multisig.
All Tari addresses provided to the bridge are valid.
The ERC�20 OFT wXTM token does not apply a fee on transfers. Otherwise, it will
halt bridge operations since it will attempt to burn more tokens than were
transferred.

4.2 Decentralization

The project under review exhibits these centralization aspects:

The contract is a transparent, upgradeable proxy—meaning it can be upgraded
at any time.
The wXTM contract minter role can mint tokens arbitrarily without being required
to prove XTM tokens were actually locked in Tari.
Users must rely on the Bridging-to-Tari process, as there's no trustless
mechanism for verifying receipt of their XTM tokens on the Tari chain or for
reverting the transfer otherwise.

Additionally, the smart contracts employ a role-based access control system. At
the highest level, the ProxyAdmin (initially the deployer) controls contract upgrades
for both wXTM and wXTMController:

The wXTM token contract has a DEFAULT_ADMIN_ROLE (initially granted to the
_delegate address specified during its initialize function) that can manage other
roles, including the MINTER_ROLE allowed to mint wXTM tokens (meant to be
granted to the wXTMController contract); this _delegate also becomes the
LayerZero OApp owner responsible for configuring cross-chain communication
(like setPeer).
Once the wXTMController possesses the MINTER_ROLE, it further delegates
minting permissions using its own set of roles, managed by its own
DEFAULT_ADMIN_ROLE. Specifically, it defines the LOW_MINTER_ROLE and
HIGH_MINTER_ROLE roles; being the former restricted to mint amounts up to a
HIGH_MINT_THRESHOLD.

Coinspect recommends using separate addresses for contract upgrades and
administrative roles. This ensures that if the internal admin is compromised, the
attacker cannot also unilaterally upgrade the contract to malicious code, thus
preventing a full takeover.

4.3 Code quality & Testing

© Coinspect 2025 8 / 19

The smart contract code is clear and easy to follow, but it lacks in-code
documentation. Coinspect recommends adopting the NatSpec format for
comments. The accompanying test suite achieves 100 % coverage for wXTMBridge,
while wXTM sits at 68 %.

© Coinspect 2025 9 / 19

5. Detailed Findings

WXTM�001
Adversary can steal bridged funds due to
single confirmation required

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Medium

Location

wxtm-bridge-contracts/layerzero.config.ts

Description

Requiring just one confirmation lets adversaries exploit short-lived chain
reorganizations to double-spend across the bridge: they send funds, trigger a
cross-chain mint, and—when the reorg occurs—end up retaining assets on
both chains.

© Coinspect 2025 10 / 19

Both directions wait for only one confirmation before treating a message as
final. While this speeds up UX on fast chains, it also exposes you to canonical
reorgs: a single-block reorg can cause the bridge to replay or revert a
transfer it had already marked as settled.

[
 optimismContract, // Chain A contract
 arbitrumContract, // Chain C contract
 [['LayerZero Labs'], []], // [requiredDVN[], [
optionalDVN[], threshold]]
 [1, 1], // [A→C confirmations, C→A
confirmations]
 [EVM_ENFORCED_OPTIONS, EVM_ENFORCED_OPTIONS], // Chain C
enforcedOptions, Chain A enforcedOptions
],

Note that the chains listed in layerzero.config.ts are testnets—no production
networks are included.

Recommendation

Bump the amount of confirmations required for cross-chain transfer.

Status

Fixed in commit ab6cc878f19725c183acd67aff2dbb1417081ffa. The Tari
team modified the configuration to align with LayerZero's default confirmation
settings (e.g., 20 for Optimism, 20 for Arbitrum, 12 for Avalanche). However,
these settings applied only to the development environments—production
environment configurations were still missing at the time of the fix review.

© Coinspect 2025 11 / 19

WXTM�002
Unchecked safeTransferFrom return value

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

wxtm-bridge-contracts/contracts/wXTMBridge.sol

Description

The bridgeToTari function in the bridge contract uses the transferFrom
function without checking its return value. Even if wXTM currently reverts,
future upgrades to wXTM (since it's upgradeable) or integrations with different
tokens in other contexts might encounter tokens that return false.

Many modern ERC20 token implementations, especially those based on
OpenZeppelin's contracts (like wXTM which uses ERC20Upgradeable), often revert
the transaction with an error message on failure (e.g., insufficient balance or
allowance) rather than returning false.

If the token always reverts on failure, then not checking the boolean output is
less immediately dangerous because the transaction would halt anyway.

Recommendation

© Coinspect 2025 12 / 19

Consider implementing safeTransferFrom instead to prevent vulnerabilities
arising from future upgrades.

Status

Fixed in commit b9cc2557fa2603d1f2fbf541c620b632d7bb1915. The Tari
team replaced transferFrom with safeTransferFrom.

© Coinspect 2025 13 / 19

WXTM�003
Zero-value transfers allowed

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

wxtm-bridge-contracts/contracts/wXTMBridge.sol

wxtm-bridge-contracts/contracts/wXTM.sol

Description

The bridgeToTari and burn functions in the wXTMBridge and wXTM contracts
permit transactions where the value parameter is zero. Zero-value
TokenUnwrapped events force off-chain systems to handle useless data,
driving up indexing costs and clogging logs with noise. Repeated emission of
these events can also be used for minor griefing, as attackers can spam the
bridge and impose extra processing load on backend infrastructure.

While an ERC20 transferFrom of zero tokens from the user to the bridge,
followed by a burn of zero tokens from the bridge, are typically no-op
operations on-chain (consuming gas but not changing token balances), the
contract will still proceed to emit the TokensUnwrapped event.

© Coinspect 2025 14 / 19

Recommendation

Disallow zero-value operations (bridgeToTari* and burn).

Status

Fixed in commit 163362a82429c95973dc442f0e8e7a739caa393a. The
burn function now throws the ZeroAmount error when attempting to burn zero
tokens.

Proof-of-Concept

Running the test bellow with the command forge test --match-test
test_bridge_to_tari_zero confirms the bridge allows zero-value transfers.

function test_bridge_to_tari_zero() public {
 uint256 value = 0 ether;

vm.startPrank(user);
 wxtm.approve(address(bridge), value);
 bridge.bridgeToTari("tariExampleAddress", value);
 vm.stopPrank();

assertEq(wxtm.balanceOf(address(bridge)), 0);
 assertEq(wxtm.balanceOf(user), 10 ether);
}

© Coinspect 2025 15 / 19

WXTM�004
Using reinitializer instead of initializer
modifier

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Description

Using reinitializer(2) in the initialize function of the wXTM contract signals
that it is meant for version 2 setup—or allows re-initialization up to version 2.
On a first deployment, this can confuse readers or suggest a misstep in the
usual initialization flow, unless you have a clear reason to start at version 2.

Recommendation

Unless necessary, use initializer instead.

Status

© Coinspect 2025 16 / 19

Fixed in commit 1dd6ff7567fbe86e1a44978a92c1b076fdd21ada. The Tari
team replaced reinitializer by the initializer modifier.

© Coinspect 2025 17 / 19

WXTM�005
Unused contract implementation

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

wxtm-bridge-contracts/contracts/wXTMBridge.sol:8

Description

The wXTMBridge contract inherits from the Ownable contract. Note However that
Coinspect did not find functionality protected by the onlyOwner modifier,
meaning that Ownable is not required at all. Having unused code exposes an
additional attack surface, and it increases operational costs.

Recommendation

Consider removing the Ownable contract inheritance.

Status

© Coinspect 2025 18 / 19

Fixed in commit 9b0b284d5ad7fe42ef52b1daa6f275dfd5487386. The Tari
team removed the Ownable contract from the bridge contract.

© Coinspect 2025 19 / 19

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

