
Sensei Stake
Smart Contract Audit

SenseiStake

Smart Contract Audit
V221028 Prepared for Sensei Node • September 2022

1. Executive Summary

2. Assessment and Scope

Additional fix review comments

3. Summary of Findings

4. Detailed Findings

SNS-01 Platform owner can extend exitDate for an indefinite period

SNS-02 Platform owner can force users into accepting a higher commission rate

SNS-03 Invalid BLS signature can lead to funds loss

SNS-04 Users’ funds can be lost after re-funding validator

SNS-05 Deposit to pre funded validator will cause funds loss

SNS-06 NFT key parameters not displayed on marketplaces

SNS-07 Check ERC721 allowance instead of ownership

SNS-08 Users can fund an unexpected validator with different conditions

© 2022 Coinspect 1

SNS-09 Hardcoded value (32 ETH)

SNS-10 404 on tokenURI link

SNS-11 SenseiStake can lose staking commission

5. Disclaimer

© 2022 Coinspect 2

1. Executive Summary

In September 2022, Sensei engaged Coinspect to perform a source code review of
SenseiStake. The objective of the project was to evaluate the security of the smart
contracts. SenseiStake allows users to deposit funds to stake an Ethereum validator
and receive an NFT representing the validator’s ownership. In return for a
percentage of the earnings of the validator, SenseiStake will run and operate it.

The following issues were identified during the initial assessment:

High Risk Medium Risk Low Risk

Open

0
Open

1
Open

0
Fixed

0
Fixed

4
Fixed

1

Reported

0
Reported

6
Reported

3

Coinspect identified a total of six medium-risk issues, such as SenseiStake owners
allowed to extend the time staked funds are locked by the platform, the possibility
to force users to agree to a given commission rate via frontrunning, the lack of
checks regarding BLS validator signatures, the possibility of funding a validator
multiple times due to public key re-use, the possibility of staking to a previously
funded validator, and NFT key parameters not shown in standard NFT
marketplaces.

The three remaining low-risk issues are related to SenseiStake not checking
ERC-721 allowance for SenseiStake operations, race conditions on createContract

function calls leading to unexpected results for users, and SenseiStake potentially
losing the staking commission under certain conditions.

© 2022 Coinspect 3

https://www.coinspect.com

2. Assessment and Scope
The audit started on September 26, 2022 and was conducted on the master
branch of the git repository at https://github.com/Sensei-Node/SenseiStake as of
commit 1661cddc1b484a900c884b0ee93b837e7348fb89 of September 23, 2022.

As described in the executive summary, SenseiStake allows users to deposit 32
ETH to stake an Ethereum validator. When users stake funds, the platform mints an
NFT representing the ownership of the validator, which is later burned when funds
are withdrawn. After unstaked funds are sent to the SenseiStake contract, funds
resulting from staking profits are subject to a commission rate. The commission rate
can vary from 0% to 50% and is settled when the user deposits the funds. On the
other hand, if unstaked funds result in less than 32 ETH (due to slashing for
instance), the platform does not take a commission.

The audited files have the following sha256sum hash:
2c88409b1bb127bcd234c3fd0e310d0600dabaa88c8facb55bd43edcb0e8b7e6 SenseiStake.sol

30b7632e4e6dcf73ab6f24044c9a3294201370e6c0e3abe77e51012bb3358846 SenseistakeServicesContract.sol

Contracts declare a fixed pragma version at 0.8.4 and are compiled with the same
release. It is recommended both to update to a newer version as many bug fixes
have been introduced and use non fixed pragma versions instead.

The code was clean, easy to understand, and very well documented with inline
comments. The repository includes a test suite providing high code coverage.
However, some tests lack assertions, or contain minor errors such as swapped
descriptions.

The platform presents a noticeable centralization degree, which is mainly due to the
lack of clarity around unstaking an Ethereum validator and the dates it would be
allowed, which is not under SenseiStake’s control. For instance, SenseiStake owners
can indefinitely push the endDate of the users’ deposit, can modify the commission
rate before users deposit funds, and generate the keys to operate the validator.
SenseiStake is also in charge of operating the validators, although it is out of the
scope of this audit. SenseiStake keeps the custody of the validator’s credentials,
which are used to operate the validator -note the user does not know these
credentials at any time. Since SenseiStake operates the validator, they are

© 2022 Coinspect 4

https://github.com/Sensei-Node/SenseiStake
https://docs.soliditylang.org/en/v0.8.15/bugs.html

responsible for avoiding penalties or slashing, as well as for signaling the
validator’s exit in the proof-of-stake chain. Regarding funds’ withdrawal, the code
specifies the address of the contract associated with the NFT as the
withdrawal_credentials for the validator. The withdrawal_credentials let
users set the keys allowed to withdraw funds unstaked from the validator, or the
address where withdrawn funds will be sent to. SenseiStake employs the latter
mechanism.

The contracts could use extra validation around user-provided inputs. Coinspect
detected several opportunities for improvement apart from the issues reported:

● Check that no duplicate validator is inserted
● Check that exitDate is not exceeded when funding a validator in

createContract

● Consider limiting how much the endDate can be increased each time. A
single mistake might push this date too far away in the future and lock funds
for ever

● Notice that if the validator does not unstake before the exitDate is reached,
SenseiStake could lose the service commission. This is an important
consideration when creating the SenseiStake validators.

The withdrawal of staked funds is still undefined in the Ethereum network. It is
likely, but uncertain, that the unstaking will trigger an increase in the balance of the
withdrawal address, based on the EIP-4895. This would be compatible with the
current implementation, but the uncertainty of the process imposes an avoidable
risk. An alternative approach would be to allow the platform to use a new
implementation of the SenseistakeServicesContract contract if both the token
owner and Sensei owner agree. This way, if an incompatibility arises during an
Ethereum hard fork, funds are not irreversibly lost.

Additional fix review comments

● SenseiStake added a mechanism to send arbitrary transactions from the
SenseistakeServicesContract, which could be used for the funds
withdrawal process, yet unconfirmed. These transactions require the
depositor’s consent. Note this newly added functionality was not included in
the scope of this audit.

© 2022 Coinspect 5

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#withdrawal-credentials
https://eips.ethereum.org/EIPS/eip-4895

3. Summary of Findings

Id Title Total Risk Fixed

SNS-01 Platform owner can extend exitDate for an
indefinite period

Medium ✔

SNS-02 Platform owner can force users into
accepting a higher commission rate

Medium ✔

SNS-03 Invalid BLS signature can lead to funds loss Medium !

SNS-04 Users’ funds can be lost after re-funding
validator

Medium ✔

SNS-05 Deposit to pre funded validator will cause
funds loss

Medium ✘

SNS-06 NFT key parameters not displayed on
marketplaces

Medium ✔

SNS-07 Check ERC721 allowance instead of
ownership

Low ✔

SNS-08 Users can fund an unexpected validator with
different conditions

Low !

SNS-09 Hardcoded value (32 ETH) Info ✔

SNS-10 404 on tokenURI link Info ✔

SNS-11 SenseiStake can lose staking commission Low !

© 2022 Coinspect 6

4. Detailed Findings

SNS-01 Platform owner can extend exitDate for an indefinite period

Total Risk

Medium

Impact
High

Location
SenseistakeServicesContract.sol

Fixed
✔

Likelihood
Low

Description

The platform owner can tempt users to acquire a validator with appealing arbitrage
conditions. However, the owner can then indefinitely modify the contracts’ exitDate (
when investors can start the withdrawal process) to maximize their commission gains.

As an example, the platform owner could fund a validator with their own funds and
then trade the resulting NFT. If the token trade provides appealing conditions such as a
short exitDate and a lower purchase price, investors willing to arbitrage may be
tempted to purchase it. However, the platform owner can deliberately extend the
exitDate once it is purchased to recover the expenses and profit of the deposited
capital via commissions.

The updateExitDate function below from the SenseistakeServicesContract

contract allows the Sensei platform owner to freely extend the exitDate of a deposit
for an indefinite amount of time.

/// @notice For updating the exitDate
/// @dev The exit date must be after the current exit date and it's only possible in validatorActive ==
true
/// @param exitDate_ The new exit date
function updateExitDate(uint64 exitDate_) external onlyOperator {

if (!validatorActive) {
revert ValidatorNotActive();

}
if (exitDate_ < exitDate) {

revert NotEarlierThanOriginalDate();
}
exitDate = exitDate_;
emit ExitDateUpdated(exitDate_);

}

© 2022 Coinspect 7

Recommendation

Ideally, the token owner could prevent an exitDate update, but not require the
agreement for an update. I.e. the exitDate is updated unless the token owner
disagrees. It is in the best interest of the token owner to not disagree before the
possibility to unstake a validator, as the validator can still misbehave and burn the user
funds.

On the other hand, once unstaking is possible, it is in the best interest of the validator
to exit on time to receive the commission for the service.

Status

Fixed. The functionality to modify the exitDate indefinitely was removed. The initial
exitDate is set to 180 after the NFT is minted and the validator created.

© 2022 Coinspect 8

SNS-02 Platform owner can force users into accepting a higher commission

rate

Total Risk

Medium

Impact
High

Location
SenseiStake.sol

Fixed
✔

Likelihood
Low

Description

The platform owner can front-run users to force them to accept a higher commission
rate than expected when calling the createContract function.

When users call the createContract function to stake a new validator, the current
commissionRate set in the contract is used to lock the commission charged by Sensei.

/// @notice Creates service contract based on implementation
/// @dev Performs a clone of the implementation contract, a service contract handles logic for managing
user deposit, withdraw and validator
function createContract() external payable {

if (msg.value != FULL_DEPOSIT_SIZE) {
revert ValueSentDifferentThanFullDeposit();

}
// increment tokenid counter
tokenIdCounter.increment();
uint256 tokenId = tokenIdCounter.current();
Validator memory validator = _validators[tokenId];
// check that validator exists
if (validator.validatorPubKey.length == 0) {

revert NoMoreValidatorsLoaded();
}
bytes memory initData = abi.encodeWithSignature(

"initialize(uint32,uint256,uint64,bytes,bytes,bytes32)",
commissionRate,
tokenId,
validator.exitDate,
validator.validatorPubKey,
validator.depositSignature,
validator.depositDataRoot

);
address proxy = Clones.cloneDeterministic(

servicesContractImpl,
bytes32(tokenId)

);
(bool success,) = proxy.call{value: msg.value}(initData);
require(success, "Proxy init failed");

emit ContractCreated(tokenId);

// mint the NFT
_safeMint(msg.sender, tokenId);

}

© 2022 Coinspect 9

However, the platform owner can front-run the createContract user’s transaction
and change the commission rate that will then be used by the createContract

function.

/// @notice Changes commission rate (senseistake service fees)
/// @dev Cannot be more than 50% commission
/// @param commissionRate_ New commission rate
function changeCommissionRate(uint32 commissionRate_) external onlyOwner {

if (commissionRate_ > (COMMISSION_RATE_SCALE / 2)) {
revert CommisionRateTooHigh(commissionRate_);

}
commissionRate = commissionRate_;
emit CommissionRateChanged(commissionRate_);

}

Once users stake a validator, the deposit cannot be undone and the commissionRate

is fixed, and the only way to recover the deposited funds is to wait until the operator
service contract is finished.

Recommendation

Allow the user to provide an accepted maximum commission rate when calling the
createContract function. Consider also allowing the user to provide an accepted
endDate.

Status

Fixed. Owners cannot modify the commission rate in the reviewed version with commit
8f97d4dfe3ca3cfbe52b1d282d4ee15e8f7f3c95.

© 2022 Coinspect 10

SNS-03 Invalid BLS signature can lead to funds loss

Total Risk

Medium

Impact
High

Location
SenseiStake.sol

Fixed
!

Likelihood
Medium

Description

The BLS signature is not validated before adding a new validator. A malformed BLS

signature will cause all funds to be lost forever for historical reasons.

Currently the Beacon Chain has the following key steps regarding the deposit process:
unknown (deposit on the mempool), deposited (the input data is validated within
~12hs), pending (stake accessible within the beacon-chain but only 6 validators per
epoch can be activated, so it is enqueued), active (the validator is actively staking) and
exited.

If the BLS signature provided while performing a deposit is invalid but has a valid
length it won’t revert while making the deposit and will fail during the validation
process losing the stake.

Recommendation

Users should validate the BLS signature before calling the createContract function.

Status

Partially fixed in commit c1d95ce1a70b59d7a75d58c5a98b2269ff759f1c. The
platform now verifies the signature off-chain before adding a new validator. An
additional solution would be allowing depositors to verify the BLS in the UI right
before depositing funds. Note this solution would require that the next validator to be
funded cannot be modified by SenseiStake to prevent front-running issues,

© 2022 Coinspect 11

https://kb.beaconcha.in/ethereum-2.0-depositing#3-validator-queue-status-pending

SNS-04 Users’ funds can be lost after re-funding validator

Total Risk

Medium

Impact
High

Location
SenseiStake.sol

Fixed
✔

Likelihood
Low

Description

Users' funds can be lost if the same validator public keys are used for different
validators.

When the validator is added for the first time, the Beacon Chain process_deposit

function performs the signature and credential checks. For subsequent calls made with
the same public key, those checks are omitted and the stake position is only topped up.

The addValidator function does not check if the validator has been previously
assigned to a tokenId. If duplicate validators are used, multiple stakers will have an
NFT backed by the same validator and staking position. In the case of such an event,
the second user will be topping the first user position, causing the user to lose all
funds.

Recommendation

Save a mapping of used public keys.

Status

Fixed in commit eb19d2ca39d25f4523ffb55f67dbef1f3f727959. SenseiStake
validators cannot be reused now.

© 2022 Coinspect 12

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#deposits
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#deposits

SNS-05 Deposit to pre funded validator will cause funds loss

Total Risk

Medium

Impact
High

Location
SenseiStake.sol

Fixed
✘

Likelihood
Low

Description

Users could deposit funds to a validator that has been previously staked, not
necessarily staked via the SenseiStake contract. This prevents users from getting a
brand new validator and puts their funds at risk in the withdrawal process.

Currently there are several scenarios where users could stake to a validator that has
previously been sent to the ETH2 Deposit contract. The attack starts with the owner
staking just 1 ether to a new validator via the ETH2 Deposit contract. A benign user
then calls createContract function sending 32 ETH for staking. Before their
transaction is mined, the owner could front-run that transaction by calling the
addValidator function to associate the next tokenId to be minted to the partially
funded validator.

Recommendation

Consider selling the NFT with the validator already funded. This would require
SenseiStake to manipulate a hot wallet when creating validators. The simplest
implementation would be that the addValidator function should require 1 ETH per
validator and make the deposit, proxy creation and initialization in that same call. Then,
anybody can purchase the NFT for 32 ETH, which should trigger a refund of the
pre-deposited funds.

Users buying the NFT should wait for block finalization and check the BLS signature
off chain before purchasing the token.

© 2022 Coinspect 13

Status

Not fixed. SenseiStake will consider offering pre-funded validators in the future.

© 2022 Coinspect 14

SNS-06 NFT key parameters not displayed on marketplaces

Total Risk

Medium

Impact
Medium

Location
SenseiStake.sol

Fixed
✔

Likelihood
Medium

Description

The tokenURI function does not include key parameters of the backed validator, such
as the commissionRate and exitDate. As a consequence, users could be deceived
when purchasing these NFTs on standard marketplaces, unaware of SenseiStake
operations

Non-fungible token marketplaces (for example, Opensea) require a specific return
structure for the tokenURI function to ensure it will be correctly displayed.

A validator-backed NFT could be adopted by the NFT community that is well aware of
how to trade these types of tokens but could be unaware on how to set up a validator
themselves.

It is unknown whether NFT trading will be supported by a custom-made SenseiStake
UI, or it is meant to be supported by existing NFT marketplaces such as OpenSea. The
lack of these parameters within the tokenURI could be abused to take advantage of
the secondary market. For example:

- Alice mints directly a validator through the Sensei platform with a high
commission rate (e.g. 50%)

- At some point, SenseiStake lowers the commissionRate to 10%
- Alice posts her NFT on a marketplace and Bob purchases it
- Alice instantiates a new validator with a lower commission rate

© 2022 Coinspect 15

https://docs.opensea.io/docs/metadata-standards

Recommendation

Add the validator commissionRate and exitDate NFT values to the tokenURI

function output.

Status

Fixed in commit eb19d2ca39d25f4523ffb55f67dbef1f3f727959. The TokenURI

function now shows the missing data.

© 2022 Coinspect 16

SNS-07 Check ERC721 allowance instead of ownership

Total Risk

Low

Impact
Low

Location
SenseiStake.sol

Fixed
✔

Likelihood
Low

Description

The endOperationService and withdraw functions require the caller to be the owner,
which is an uncommon practice. Owners can approve other addresses to operate with
the token which is allowed in the Open Zeppelin ERC721 token contract
implementation used. These transfer operations allowed by the owners are on a higher
hierarchy than the endOperationService and withdraw functions.

Recommendation

Any allowed address should also be allowed to call the endOperationService and
withdraw functions. Use the _isApprovedOrOwner function instead of checking for
ownership.

Status

Fixed in commit eb19d2ca39d25f4523ffb55f67dbef1f3f727959. Checks for
ownership were replaced by ownership or allowance.

© 2022 Coinspect 17

SNS-08 Users can fund an unexpected validator with different conditions

Total Risk

Low

Impact
Low

Location
SenseiStake.sol

Fixed
!

Likelihood
Low

Description

When a user calls createContract there is an expected exitDate and validator to be
used. If two users call this method at the same time, one of those users will get an
unexpected validator and exitDate.

Recommendation

The createContract function can receive optional parameters to limit which validator
or exitDate is accepted and fail if there is a mismatch.

Status

Partially fixed. Since SenseiStake will use a fixed commission rate and exitDate, the
only variation the user could suffer is funding a different validator than expected.

© 2022 Coinspect 18

SNS-09 Hardcoded value (32 ETH)

Total Risk

Info

Impact
-

Location
SenseistakeServicesContract.sol

Fixed
✔

Likelihood
-

Description

Hardcoded constants used across the codebase for comparisons and checks are
sometimes difficult to understand without having a context or reading the
documentation. Similarly, maintainability of the code is hindered by hardcoded
numbers around the code. In order to provide a better understanding of each constant
value used, they could be modified by constant variables.

Also, if the numbers are not queried by other contracts those variables could be set as
private instead of public. Restricting the visibility removes the need for the
compiler to create a getter for each public variable, saving gas. Users will still be able
to query those values by reading the contract code, which should be verified after
deployment.

if (balance > 32 ether) {
unchecked {

uint256 profit = balance - 32 ether;

Recommendation

Use the FULL_DEPOSIT_SIZE constant instead of hardcoded values.

Status

Fixed in commit 7557a28975b6ce7f749ab6ffecc64ea79cee500e. Constants are used
now

© 2022 Coinspect 19

SNS-10 404 on tokenURI link

Total Risk

Info

Impact
-

Location
SenseiStake.sol

Fixed
✔

Likelihood
-

Description

The link https://dashboard.senseinode.com/non-custodial/stake/eth provided in the
tokenURI returns a 404 error when opening.

Recommendation

Fix the link or service at the given location.

Status

Fixed. SenseiStake provided a new working link
https://dashboard.senseinode.com/senseistake.

© 2022 Coinspect 20

https://dashboard.senseinode.com/non-custodial/stake/eth
https://dashboard.senseinode.com/senseistake

SNS-11 SenseiStake can lose staking commission

Total Risk

Low

Impact
Low

Location
SenseistakeServicesContract.sol

Fixed
!

Likelihood
Low

Description

By calling the endOperatorServices function before the staked ETH is withdrawn to
the contract, a malicious depositor can force the SenseiStake commission to 0.

Depositors can force the operatorClaimable variable (the SenseiStake commission)
to 0 once the exitDate (180 days) elapses and the contract balance is less than
32ETH. This would require the user to deposit at least 16 ETH as highlighted below,
which can be later recovered.

/// @notice Allows user to start the withdrawal process
/// @dev After a withdrawal is made in the validator, the receiving address is set to this contract
address, so there will be funds available in here. This function needs to be called for being able to
withdraw current balance
function endOperatorServices() external {

uint256 balance = address(this).balance;
if (balance < 16 ether) {

revert CannotEndZeroBalance();
}
if (!validatorActive) {

revert NotAllowedInCurrentState();
}
if (block.timestamp < exitDate) {

revert NotAllowedAtCurrentTime();
}
if (

(msg.sender != tokenContractAddress) &&
(

!SenseiStake(tokenContractAddress).isApprovedOrOwner(
msg.sender,
tokenId

)
) &&
(msg.sender != Ownable(tokenContractAddress).owner())

) {
revert CallerNotAllowed();

}
validatorActive = false;
if (balance > FULL_DEPOSIT_SIZE) {

unchecked {
uint256 profit = balance - FULL_DEPOSIT_SIZE;
uint256 finalCommission = (profit * commissionRate) /

COMMISSION_RATE_SCALE;
operatorClaimable += finalCommission;

}
}

© 2022 Coinspect 21

emit ServiceEnd();
}

Although SenseiStake added a check to require at least 16 ETH to execute this
function, this does not prevent users from exploiting this issue. Depositors can exploit
it in the time window between the validator exit signal and the ETH withdrawal to
avoid risking any capital. On the other hand, this same check would require the user to
top-up the contract’s balance if withdrawn funds result in less than 16 ETH due to
slashing or penalization.

Recommendation

Consider leaving the updateExitDate function following the recommendation in
SNS-01.

Status

Acknowledged. SenseiStake assumes the risk of potentially losing the staking
commission for a given validator.

© 2022 Coinspect 22

5. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2022 Coinspect 23

© 2022 Coinspect 24

