

© Coinspect 2025 1 / 17

CapyFi
Smart Contract Audit

Version: v250610 Prepared for: CapyFi June 2025

Security Assessment

1. Executive Summary
2. Summary of Findings

2.3 Solved issues & recommendations

3. Scope
4. Assessment

4.1 Security assumptions
4.2 Decentralization
4.3 Testing
4.4 Code quality
4.5 Deployment review

5. Detailed Findings

© Coinspect 2025 2 / 17

CAPY-01 - Adversaries might drain the protocol as 1
caUXD will always be worth 1 USD
CAPY-02 - Price oracle does not check for stale
prices
CAPY-03 - Hardcoded blocksPerYear could lead to
interest rate miscalculations in future deployments

6. Disclaimer

© Coinspect 2025 3 / 17

1. Executive Summary
In May, 2025, CapyFi engaged Coinspect to perform a Smart Contract Audit of
CapyFi.

The objective of the project was to evaluate the security of the smart contracts
forked from Compound alongside the deployment scripts, parameters and actual
deployment.

CapyFi is a decentralized lending protocol operating as a fork of Compound V2
on the Ethereum and LaChain blockchains. Its primary objective is to provide
standard lending and borrowing functionalities while introducing a significant
modification: an admin-managed whitelist that controls the minting of cTokens.
This restricts which addresses can supply assets, offering a permissioned layer to
the protocol.

Solved Caution Advised Resolution Pending

High
1

High
0

High
0

Medium
0

Medium
0

Medium
0

Low
0

Low
0

Low
0

No Risk
2

No Risk
0

No Risk
0

Total

3
Total

0
Total

0

https://capyfi.com/
https://coinspect.com/

© Coinspect 2025 4 / 17

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

CAPY-01 Adversaries might drain the protocol as 1 `caUXD` will
always be worth 1 USD High

CAPY-02 Price oracle does not check for stale prices None

CAPY-03 Hardcoded blocksPerYear could lead to interest rate
miscalculations in future deployments None

© Coinspect 2025 5 / 17

3. Scope
The scope was set to be the modifications made from the forked commit of
Compound V2 up to CapyFi's commit dad6d138d8ad7d955c3e5de3a49c73ff913945e2
of the https://github.com/LaChain/capyfi-sc repository.

CapyFi forked Compound's V2 state from the repository
https://github.com/compound-finance/compound-protocol at commit
a3214f67b73310d547e00fc578e8355911c9d376 and commited this state to CapyFi's
repository at commit 69714689cad05aa63845c9996c2b1837dfc0dd21.

Coinspect reviewed the modifications to the base Compound V2 protocol
between 69714689cad05aa63845c9996c2b1837dfc0dd21 and
dad6d138d8ad7d955c3e5de3a49c73ff913945e2 at CapyFi's repository

Additionally, Coinspect reviewed the state of the deployed smart contracts at
these Ethereum addresses:

Core

Component Address

Unitroller 0x0b9af1fd73885aD52680A1aeAa7A3f17AC702afA

Comptroller 0x00dc4965916e03A734190fA382633657c71f867E

Oracle 0xfbA2712d3bbcf32c6E0178a21955b61FE1FF424A

Multisig 0x6C15e4Bc44CC5674b1d7956D0e9596d2E509eD24

Whitelist 0x4B3535047C2B193Bc0c95ED2EF435A6BA6Dc2609

Interest Rate Models

Model Address

iRM_UXD_Updateable 0xf5FA0EA9C6b7bE2da713F8BDec9D35AAE289E5c0

https://github.com/LaChain/capyfi-sc
https://github.com/compound-finance/compound-protocol
https://github.com/LaChain/capyfi-sc

© Coinspect 2025 6 / 17

iRM_WETH_Updateable 0x03c1cF154d621E0Fd7e2b88be3aE60CCf07Aca31

iRM_LAC_Updateable 0x254FCeeece1893c0A55bC7cF8A8a1C21cB05C29C

iRM_WBTC_Updateable 0xcA142dA9286D37211e7e04FEc59D1de5de86EF33

iRM_USDT_Updateable 0x5BeA6bE1DCcD0b5066842d42852e6302d7f668e8

iRM_USDC_Updateable 0xa6b02274f7B017C96d570bc2693119c90533E9c3

cTokens

CToken Address

caUXD 0x98Ac8AC56d833bD69d34F909Ac15226772FAc9aa

caETH 0x37DE57183491Fa9745d8Fa5DCd950f0c3a4645c9

caLAC 0x0568F6cb5A0E84FACa107D02f81ddEB1803f3B50

caWBTC 0xDa5928d59ECE82808Af2cbBE4f2872FeA8E12CD6

caUSDT 0x0f864A3e50D1070adDE5100fd848446C0567362B

caUSDC 0xc3aD34De18B59A24BD0877e454Fb924181F09C8f

Underlying Tokens

Token Address

uxd 0x0f6011F7DBC40c17EcE894b1147f4ecfA712b600

lac 0x0Df3a853e4B604fC2ac0881E9Dc92db27fF7f51b

wbtc 0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599

usdt 0xdAC17F958D2ee523a2206206994597C13D831ec7

usdc 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48

© Coinspect 2025 7 / 17

4. Assessment
The CapyFi protocol largely mirrors Compound V2's functionality, enabling users
to supply assets to earn interest and borrow assets against collateral. The core
innovation is the Whitelist contract, which, managed by designated administrators,
dictates who can mint cTokens and thus supply liquidity. This whitelist check is
integrated into the mintInternal() function within CToken. The protocol uses an
oracle for asset pricing and has adjusted its interest rate model parameters for
Ethereum's current block times. Administrative control over the whitelist includes
adding or removing authorized minters and activating/deactivating the whitelist
system. The Whitelist contract is also designed to be an UUPS upgradeable proxy
by its admin.

4.1 Security assumptions

For this security assessment, Coinspect made the following assumptions:

Users understand that supplying assets (minting) is a permissioned action
controlled by administrators via the whitelist.
The administrative roles, including the protocol's multisig and the whitelist's
ADMIN_ROLE, are managed securely and competently.
The designated multi-sig address is secure, and its keyholders are honest,
competent, and not compromised.
Underlying ERC20 tokens integrated into the protocol are well-behaved (e.g.,
conform to ERC20 standard, no malicious hooks in transfer/transferFrom).

4.2 Decentralization

CapyFi incorporates centralized elements through its administrative controls. The
general protocol parameters, inherited from Compound V2, are expected to be
managed by a multisig address (0x6C15e4Bc44CC5674b1d7956D0e9596d2E509eD24).
More specifically, the new whitelist functionality is governed by an ADMIN_ROLE
associated with the Whitelist contract. This admin has the power to add/remove
addresses from the minting whitelist, enable/disable the whitelist checks, and
upgrade the whitelist contract itself. Users must be aware of these significant
powers vested in the admins, as they directly impact access to supply-side

© Coinspect 2025 8 / 17

participation and can alter the whitelist logic. The security and operational
practices of these admin entities are critical.

4.3 Testing

CapyFi employs Foundry for its testing environment and has developed new tests
for the recently added whitelist functionality. However, Coinspect noted that the
comprehensive test suite from the base Compound V2 protocol was discarded
during the port to Foundry framework. This absence of foundational tests
significantly elevates the protocol's risk profile.

Key risks include:

Potential for undetected regressions or vulnerabilities within the forked
Compound V2 core logic.
Loss of coverage for numerous edge cases and complex interactions
previously validated by the original tests. The lack of this broad test coverage
for the underlying protocol increases the possibility of undiscovered issues in
the well-established but now less-tested base components, and makes future
codebase maintenance and modifications more challenging and risk-prone.

4.4 Code quality

CapyFi's approach to code quality involves minimizing modifications to the
original Compound V2 code to maintain clarity on the changes introduced,
primarily the whitelist system. The documentation provides a good overview of
this new feature.

4.5 Deployment review

Overall, the parameters configured reflect the values from the main production
configuration file ProdConfig.sol and proxies are initialized.

However, Coinspect identified several concerns that should be
addressed/considered:

1. The multisig 0x6C15e4Bc44CC5674b1d7956D0e9596d2E509eD24 that manages the
protocol is a 2 out of 5 wallet with the following owners:

0x5CA3F8EEBa12D83408fc097c2dAd79212456F20F,

© Coinspect 2025 9 / 17

0x23ceC92F92bde95e401f0a2b50b072A6069dFBd5
0x5b72e13f78FEB8f5b44392f2e32940D4f37FA313
0x9850b4F631F1cae37bb1C42C8004ffc2Cd31DcBe
0x00A74411DDBC50C04353543d5D3f4296936DA645

This means that attackers have to compromise less than the 50% of the accounts
to take control of the whole protocol. It is suggested to increase the multisig's
threshold to represent at least a 50%.

2. The only admin of the Whitelist smart contract is not the multisig

Coinspect observed that the account in control of the Whitelist smart contract is
0x6a138bd6d69feb3c2f5426549e60e644778ad04c. Also, the multisig has no
administrator privileges on this smart contract. This account has multiple
interactions with other protocols such as ZkSync Bridgehub at
0x303a465B659cBB0ab36eE643eA362c509EEb5213. By analyzing previous transactions
from this account, it is likely that this account belongs to the deployer used on the
Foundry suite. Coinspect strongly recommends to grant these privileges to the
multisig and remove any ownership granted to this account.

3. Whitelist smart contract is not set for any cToken

Coinspect identified that currently, there are is no whitelist address specified on
any cToken. This means that the newly added feature is currently unused. By the
time of this review, caWBTC has issued nearly $6.5MM in value.

https://etherscan.io/address/0xDa5928d59ECE82808Af2cbBE4f2872FeA8E12CD6

© Coinspect 2025 10 / 17

5. Detailed Findings

CAPY-01
Adversaries might drain the protocol as 1
`caUXD` will always be worth 1 USD

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

script/config/ProdConfig.sol

src/contracts/SimplePriceOracle.sol

Description

Adversaries might drain the protocol by arbitraging caUXD against different
markets since this asset has a fixed price.

The CapyFi protocol's deployment configuration, specifically within
ProdConfig.sol, sets a hardcoded fixedPrice representing $1.00 for the caUXD

© Coinspect 2025 11 / 17

cToken. This configuration is intended to maintain a 1:1 peg with the US dollar.

config: CtokenConfig({
 collateralFactor: 0,
 underlyingPrice: 1_000_000_000_000_000_000,
 reserveFactor: 0.075e18,
 chainlinkOracleConfig: chainlinkOracleConfig({
 underlyingAssetDecimals: 18,
 priceFeed: 0x00,
 fixedPrice: 1000000000000000000
 })
})

This static valuation, however, renders the protocol vulnerable if the UXD
stablecoin deviates from this peg. The price oracle will persistently report
$1.00 for caUXD irrespective of its actual market value, unless directly updated.

Should UXD depeg:

Below $1.00: Malicious attacker could deposit undervalued UXD into
CapyFi, where it's treated as $1.00, enabling them to borrow assets
exceeding their collateral's true market worth. The protocol might also fail
to liquidate undercollateralized UXD positions due to overvaluing the
collateral.
Above $1.00: Borrowers using UXD as collateral could face unfair
liquidations if other asset prices decline, as their UXD collateral would be
undervalued by the protocol.

Coinspect considers the impact to be high because a UXD market price
deviation, combined with this hardcoded price, could lead to direct financial
losses for users, drainage and insolvency of the protocol. As for the
likelihood, it is assessed to be high as all fungible assets fluctuate with market
price.

Past events have shown that even major stablecoins can depeg, for instance,
USDC dropped to $0.87.

Recommendation

Fetch the UXD price directly from a reliable oracle feed (e.g., Chainlink) rather
than relying on a hardcoded 1:1 assumption.

Status

Fixed on commit 31f08fdb42be757cc73afe32b90dbdfa5924c771.

https://blog.sigmaprime.io/oracles-and-pricing.html#:~:text=or%20price%20spikes.-,Price%20Pegs,-The%20Black%20Thursday
https://decrypt.co/123211/usdc-stablecoin-depegs-90-cents-circle-exposure-silicon-valley-bank

© Coinspect 2025 12 / 17

The CapyFi team addressed the issue by replacing the hardcoded price with a
custom, updatable oracle contract, CapyFiAggregatorV3.

The security depends on the reliability and security of the off-chain process
and the accounts authorized to push price updates. These off-chain
components were not part of the audit's scope.

As a follow-up recommendation, since the fixedPrice functionality within the
main price oracle is now obsolete, Coinspect recommends removing this logic
from the implementation.

© Coinspect 2025 13 / 17

CAPY-02
Price oracle does not check for stale prices

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

/src/contracts/PriceOracle/ChainlinkPriceOracle.sol

Description

The ChainlinkPriceOracle contract, responsible for providing asset prices to
the CapyFi protocol, fails to verify the freshness of data obtained from
Chainlink price feeds. This omission means the oracle can return stale
(outdated) prices, leading to inaccurate asset valuations within the protocol.
Such inaccuracies can result in incorrect liquidations, unfair loan-to-value
calculations, etc.

The getUnderlyingPrice function retrieves price data by calling
latestRoundData on the configured Chainlink aggregator:

// Retrieve price from feed
(
 /* uint80 roundID */,
 int256 answer,
 /*uint256 startedAt*/,
 /*uint256 updatedAt*/,

© Coinspect 2025 14 / 17

 /*uint80 answeredInRound*/
) = priceFeed.latestRoundData();
// Invalid price returned by feed. Comptroller expects 0 price on
error.
if (answer <= 0) return 0;
uint256 price = uint256(answer);

However, it only utilizes the price (answer) and the feed's decimals, while
ignoring the updatedAt timestamp. This timestamp indicates when the data
was last updated on-chain and is essential for assessing data freshness.

This issue is considered to have no overall risk as most Chainlink feeds are
generally considered reliable and robust. However, if a less reliable price feed
is configured, this issue could pose a significant risk to the protocol.

Recommendation

The ChainlinkPriceOracle contract should be modified to incorporate stale
price checks for each feed it consumes. This ensures that the prices supplied
to the protocol are recent and reflect current market conditions. Alternatively,
add to the price feed a fallback system to allow the protocol to keep
operating under these circumstances.

Status

Acknowledged.

The CapyFi Team stated that they will consider this warning for future
deployments.

© Coinspect 2025 15 / 17

CAPY-03
Hardcoded blocksPerYear could lead to
interest rate miscalculations in future
deployments

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

/src/contracts/BaseJumpRateModelV2.sol:24

Description

Future deployments of the protocol on chains with a different or variable
amount of blocks per year lead to miscalculations in the interest rates.

The blocksPerYear variable is hardcoded at the BaseJumpRateModelV2, which
was modified to match Ethereum times.

* @notice The approximate number of blocks per year that is assumed by
the interest rate model (assuming 12s blocks)
*/
uint public constant blocksPerYear = 2628000;

© Coinspect 2025 16 / 17

Coinspect verified the deployments on LaChain and observed that this value
was changed to match LaChain's expected amount of blocks per year.
However, since this parameter is hardcoded in the smart contract instead of
being an immutable variable set on deployment, future deployments could
face the risk of using an outdated value if remain unchanged.

Recommendation

Make blocksPerYear an immutable variable. Alternatively, include this warning
on the protocol's documentation.

Status

Acknowledged.

The CapyFi Team stated that they will consider this warning for future
deployments.

© Coinspect 2025 17 / 17

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

