
Algorand Name Service
Smart Contract Audit

Algorand Name Service

Smart Contract Audit
V220602 Prepared for Algorand Name Service • May 2022

1. Executive Summary

2. Assessment and Scope

3. Summary of Findings

4. Detailed Findings

ANS-1 Attackers can steal any name record

ANS-2 Lack of fee validation

5. Disclaimer

© 2022 Coinspect 1

1. Executive Summary

In April 2022, Algorand Name Service engaged Coinspect to perform a source
code review of the registry smart contracts. The objective of the project was to
evaluate the security of the smart contracts.

The following issues were identified during the initial assessment:

High Risk Medium Risk Low Risk

1 0 1
Fixed

1
Fixed

0
Fixed

1

© 2022 Coinspect 2

https://www.coinspect.com

2. Assessment and Scope

The audit started on April 20, 2022 and was conducted on the release tagged v1.0
of the git repository at github.com/algorand-naming-service as of commit
3d6d9a07e0593075ea5ce025574bfc30648a8ec9 of Mar 09, 2022.
The audited files have the following sha256sum hashes:

80b99e7c028bb731ef17323a8cc93c69b71c2b4e56e3203332d58ddf2cae56f1 contracts/constants.py

1fa679c985c8025b49b68a4016fa8614015eda0aa7bc105100e88316af80b100 contracts/dot_algo_name_record.py

0b4cf2aa548824e2ff90bcbe313c19ecdaddf0cbbb33f58efa16e25b541348b0 contracts/dot_algo_registry.py

728a9d0dc3d55c81c87bbe2794875a839b942c6a8f1729a89bf55820718b5c27 unit-tests/ans_helper.py

c513c62bdda4a04c3e30ad9e3c43f4a6af113f35a93b256bf7b6eb1f981bc5ee

unit-tests/TestDotAlgoNameRegistry.py

“The Algorand Name Service implements a key-value store of name-address pairs
using an Algorand stateful smart contract and smart signatures. Each smart
contract is a name registry representing a domain suffix (such as .algo). A name
record account opt's into the name registry smart contract and mentions the
"owner" address and name's metadata in its local storage for the smart contract.
The desired name is used as input to a standardized TEAL program and compiled,
thereby converting the TEAL program into a Logic Signature.” - ANS
documentation.

Coinspect did not find issues with the design, but the implementation lacks rigorous
transaction fields validation that gives place to ANS-1.

Update

On June 1, 2022 Coinspect verified that the changes applied on commit
5cdfb894ffbe458402909b88e12fa4d20f2f9d92 of the main branch address the
issues raised in the initial assessment. Additionally, Coinspect verified that these
changes were deployed on mainnet on transaction
7SRW4RA3XN2UHX573P5OCGBLWVWV7OVWKOGLAUETET3QXWT2F4VA.

© 2022 Coinspect 3

https://github.com/algorand-naming-service/registry-smart-contracts/releases/tag/v1.0
https://docs.algonameservice.com/technical-details/design
https://docs.algonameservice.com/technical-details/design
https://algoexplorer.io/tx/7SRW4RA3XN2UHX573P5OCGBLWVWV7OVWKOGLAUETET3QXWT2F4VA

3. Summary of Findings

Id Title Total Risk Fixed

ANS-1 Attackers can steal any name record High ✔

ANS-2 Lack of fee validation Low ✔

© 2022 Coinspect 4

4. Detailed Findings

ANS-1 Attackers can steal any name record

Total Risk

High

Impact
High

Location
contracts/dot_algo_name_record.py
contracts/dot_algo_registry.py

Fixed
✔

Likelihood
High

Description

Attackers can take control of a Logic Signature name record by rekeying it to another
address. This gives them full control of the address of the Logic Signature and allows
them to clear the state and register themselves as owners.

The attack can be performed with the following steps:

● Fund Logic Signature with enough algo to pay for the base fee of the chosen
name

● Submit the following Group Transactions:
1. Payment from Logic Signature to Registry Smart contract.
2. Payment from Logic Signature to the attacker's address (can be 0).
3. Opt-in from attacker address into Registry Smart contract.
4. Call register_name from Logic Signature to Registry Smart

contract with rekeyTo set to an attacker address.
● Submit ClearState of Logic Signature.

Both validation functions below allow for the malicious group transactions.

[dot_algo_name_record.py]
33 is_valid_txn = Seq([
34
35 Assert(Len(Bytes(name)) <= Int(64)),
36 For(i.store(Int(0)), i.load() < Len(Bytes(name)), i.store(i.load() + Int(1))).Do(
37 Assert(
38 Or(
39 And(
40 GetByte(Bytes(name), i.load()) >= Int(constants.ASCII_LOWER_CASE_A),
41 GetByte(Bytes(name), i.load()) <= Int(constants.ASCII_LOWER_CASE_Z)
42),
43 And(
44 GetByte(Bytes(name), i.load()) >= Int(constants.ASCII_DIGIT_0),

© 2022 Coinspect 5

45 GetByte(Bytes(name), i.load()) <= Int(constants.ASCII_DIGIT_9)
46)
47)
48)
49),
50
51 Assert(
52 Or(
53 Global.group_size() == Int(2),
54 Global.group_size() == Int(4)
55)
56),
57
58 Assert(Gtxn[0].sender() == Gtxn[1].sender()),
59 Assert(Gtxn[0].receiver() == Addr(DOT_ALGO_ESCROW_ADDRESS)),
60
61 If(Global.group_size() == Int(2))
62 .Then(
63 Assert(
64 And(
65
66 Gtxn[1].application_id() == Int(DOT_ALGO_APP_ID),
67 Gtxn[1].application_args[0] == Bytes("register_name"),
68 Gtxn[1].application_args[1] == Bytes(name)
69)
70)
71).ElseIf(Global.group_size() == Int(4))
72 .Then(
73 Assert(
74 And(
75
76 Gtxn[1].receiver() == Gtxn[2].sender(),
77 Gtxn[2].application_id() == Int(DOT_ALGO_APP_ID),
78 Gtxn[2].on_completion() == OnComplete.OptIn,
79 Gtxn[3].application_id() == Int(DOT_ALGO_APP_ID),
80 Gtxn[3].sender() == Gtxn[0].sender(),
81 Gtxn[3].application_args[0] == Bytes("register_name"),
82 Gtxn[3].application_args[1] == Bytes(name)
83)
84)
85).Else(
86 Return(Int(0))
87),
88
89 Int(1)
90])

[dot_algo_registry.py]
33 is_valid_txn = Seq([
34
35 Assert(
36 Or(
37 Global.group_size() == Int(2),
38 Global.group_size() == Int(4)
39)
40),
41
42 Assert(Gtxn[0].sender() == Gtxn[1].sender()),
43 Assert(Gtxn[0].receiver() == Global.current_application_address()),
44 Assert(Gtxn[0].rekey_to() == Global.zero_address()),
45 Assert(Gtxn[0].close_remainder_to() == Global.zero_address()),
46
47 If(Global.group_size() == Int(2))
48 .Then(
49 Assert(
50 And(
51
52 Gtxn[1].application_id() == Global.current_application_id(),
53 Gtxn[1].sender() == Gtxn[0].sender(),
54 Gtxn[1].application_args[0] == Bytes("register_name")
55)
56)
57).ElseIf(Global.group_size() == Int(4))

© 2022 Coinspect 6

58 .Then(
59 Assert(
60 And(
61
62 Gtxn[1].receiver() == Gtxn[2].sender(),
63 Gtxn[2].application_id() == Global.current_application_id(),
64 Gtxn[2].on_completion() == OnComplete.OptIn,
65 Gtxn[3].application_id() == Global.current_application_id(),
66 Gtxn[3].sender() == Gtxn[0].sender(),
67 Gtxn[3].application_args[0] == Bytes("register_name")
68)
69)
70).Else(
71 Return(Int(0))
72),
73
74 Int(1)
75])

If the name was not registered yet, attackers can use the OptIn call to rekey the Logic
Signature.

Alternatively, a similar attack can be performed by setting close_remainder_to. The
close operation will clean the address storage, allowing an attacker to register
themselves as owners.

Recommendation

Validate the rekey_to and close_remainder_to fields in all the protocol transactions.

Status

Issue addressed by following recommendation.

© 2022 Coinspect 7

ANS-2 Lack of fee validation

Total Risk

Low

Impact
Low

Location
contracts/dot_algo_name_record.py
contracts/dot_algo_registry.py

Fixed
✔

Likelihood
Low

Description

Lack of fee validation can lead to drainage of contract accounts.

It is recommended in the Algorand Guideline.

Recommendation

Validate fees to be less than a reasonable value.

Status

Issue addressed by following recommendation.

© 2022 Coinspect 8

https://developer.algorand.org/docs/get-details/dapps/avm/teal/guidelines/

5. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2022 Coinspect 9

