cCEiNnspect

You build, we defend.

Smart Contract Audit

Green Minting Token
August, 2025

cCEIiNnspect

Green Minting Token
Smart Contract Audit

Version: v250813 Prepared for: Green Mint August 2025

Security Assessment

1. Executive Summary
2. Summary of Findings
2.3 Solved issues & recommendations
3. Scope
4. Assessment
4.1 Security assumptions
4.2 Decentralization
4.3 Testing
4.4 Code quality

5. Detailed Findings

© Coinspect 2025 1/30

GRM-01 - Funds are permanently locked after vesting
schedule completes

GRM-02 - Late token supply skews the vesting
schedule

GRM-03 - Off-by-one error in stage calculation
causes premature unlocking

GRM-04 - Missing constructor validation can lead to
funds lock and vesting errors

GRM-05 - Missing zero address checks in
constructor can break contract functionality

GRM-06 - Unchecked token transfer can lead to
silent failures and accounting inconsistencies

6. Disclaimer

© Coinspect 2025

2/30

1. Executive Summary

Audit of Green Mint's Green Minting Token. The objective of the project was to
evaluate the security of the smart contracts.

v A X

Solved Caution Advised Resolution Pending
High High High
2 0 0
Medium Medium Medium
2 0 0
Low Low Low
0 0 0
No Risk No Risk No Risk
2 0 0
Total Total Total

6 0 0

Coinspect identified the following issues in the Green Minting Token's logic. High
severity findings include permanent fund lock-up after vesting completion (GRM-01)
and distorted vesting slope due to delayed token supply (GRM-62). Medium
severity issues involve premature unlocking from an off-by-one stage
miscalculation (GRM-83) and missing constructor checks that risk incorrect vesting
behavior (GRM-04).

© Coinspect 2025 3/30

https://www.green-mint.com/
https://coinspect.com/

2. Summary of Findings

This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk
GRM-01 Funds are permanently locked after vesting schedule High
completes
GRM-02 Late token supply skews the vesting schedule High
GRM-03 Off-by-one error in stage calgulatlon causes premature Medium
unlocking
GRM-04 Missing constructor vallda.tlon can lead to funds lock Medium
and vesting errors
GRM-05 Missing zero address checks In constructor can break None
contract functionality
GRM-06 Unchecked token transfer can lead to silent failures and None

accounting inconsistencies

© Coinspect 2025

4/30

3. Scope

The scope was set to be the repository:

e https://github.com/green-minting/mint-token at commit
a7180aabke94dc563d0c7967d10cc563eb9120dee.

© Coinspect 2025 5/30

https://github.com/green-minting/mint-token

4. Assessment

On this engagement, Coinspect reviewed the project composed of two Solidity
smart contracts: VestedLock and GreenMintingToken.

The GreenMintingToken contract is an ERC20 token implementing the EIP-3009
standard, which facilitates gas-less transactions through signed off-chain
messages. It also inherits burnable functionalities from OpenZeppelin.

The VestedLock contract is designed to manage a time-based vesting schedule for
a single designated beneficiary account (vestingAccount). It releases portions of
the GreenMintingToken according to a predefined schedule of percentages and
time intervals.

EIP36009

This abstract contract provides a standard implementation for EIP-3009. It uses
EIP-712 for typed data hashing to protect against replay attacks across different
chains or contracts. It enables three main actions via off-chain signatures:

e _transferWithAuthorization: Allows a third party to submit a transfer
transaction on behalf of a token holder.

e _receiveWithAuthorization: Allows a recipient to submit a transaction to
receive tokens, authorized by the sender's signature. This includes a protection
where msg.sender must be the recipient (to) to prevent front-running.

e _cancelAuthorization: Allows a user to cancel a signed authorization nonce
before it is used. It correctly manages authorization states to prevent nonce
reuse and includes checks for the validity period of signatures (validAfter and
validBefore).

GreenMintingToken

Implements an ERC20 token named "Green Minting Token" (MINT). It inherits from
OpenZeppelin's ERC20Burnable and the provided EIP3009 contract. During
construction, it mints an initial supply to a list of pre-funded accounts and
allocates a specified vestedAmount to the contract deployer. It exposes the
functions for the EIP-3009 implementation. No further minting capabilities are
available post-deployment.

© Coinspect 2025 6/30

VestedLock

Locks tokens and releases them over time to a single vestingAccount. The vesting
schedule is defined by three immutable parameters:

e unvestingStartTimestamp: The timestamp when the vesting period begins.
e secPerStage: The duration of each vesting stage.

e claimingPercentsSchedule: An array defining the percentage of the total vested
tokens that becomes claimable at each stage.

The availableVestedTokens() function calculates the amount of tokens currently
claimable by determining the current stage and summing the corresponding
percentages from the schedule.

4.1 Security assumptions

For this security assessment, Coinspect made the following assumptions:

1. The deployer of the contracts is trusted to provide correct and non-
malicious constructor parameters (e.g., vesting schedule, initial token
allocations).

2. Users (token holders) are responsible for securely managing the private keys
used to sign EIP-3009 messages. Compromise of a user's key will allow an
attacker to authorize transactions on their behalf.

4.2 Decentralization

The protocol incorporates elements of both centralization and decentralization.

Roles and Privileges:

o Deployer: The account that deploys the GreenMintingToken contract has
significant initial power. It determines all pre-funded accounts and their
amounts, and receives the entire vestedAmount. The deployer of the VestedLock
contract sets all vesting parameters, including the beneficiary vestingAccount,
which are immutable.

© Coinspect 2025 7 /30

o Vesting Account: The vestingAccount in the VestedLock contract is the only
address permitted to call the claimVestedTokens() function. This is a privileged
role, which is limited to withdrawing its own vested funds.

Ownership

Neither contract implements a standard ownership pattern (e.g., Ownable). After
deployment, there is no single privileged account that can alter the contracts'
logic, pause functionality, or upgrade them. All parameters in VestedLock are
immutable, enhancing trust and predictability.

The vestingAccount could be set to a multisig wallet address, which would
decentralize control over the claiming of vested tokens. Users should be aware
that if the vestingAccount is an Externally Owned Account (EQA), its control rests
with a single private key.

4.3 Testing

The tests suite provides coverage of the primary functionalities of the VestedlLock
and GreenMintingToken contracts. A deployment script was also provided, which
confirms the intended production configuration aligns with a full 100% vesting
schedule.

The test suite is structured and covers the following areas:

e Initial State: Tests verify that the GreenMintingToken is minted to pre-funded
accounts as expected and that the VestedLock contract is properly funded with
the total amount of tokens designated for vesting.

e Access Control: The suite confirms that only the designated vestingAccount can
successfully call the claimvestedTokens function, while attempts from other
accounts are correctly reverted.

o Time-based Logic: The tests use Hardhat's evm_mine functionality to manipulate
block timestamps, confirming that vesting claims are prohibited before the
unvestingStartTimestamp and are permitted afterward.

e EIP-3009 Functionality: The test cases for the EIP-3009 implementation are
comprehensive and validate:

1. The standard transferWithAuthorization flow, where a third party can submit
a transaction on behalf of a signer.

2. The cancelAuthorization flow, ensuring a signed nonce can be invalidated
before use.

© Coinspect 2025 8/30

3. An adversarial scenario for receiveWithAuthorization, confirming that only
the designated recipient (to) can execute the transaction, which mitigates
front-running attacks.

While the test suite is robust, Coinspect has identified an area for potential
improvement to further increase confidence in the contract's behavior under all
conditions:

o Cumulative Vesting Claims: the test named "Unvest tokens in schedule"
validates the claiming process on a stage-by-stage basis. However, it does not
cover the scenario where a user forgoes claiming for several stages and then
attempts to claim the total accumulated amount from all missed stages at
once. Coinspect recommends adding a test case that advances time across
multiple vesting stages before the first claim is made. This would explicitly
verify that the cumulative logic within the availableVestedTokens function is
calculated correctly in such a scenario.

4.4 Code quality

The overall code quality is good, adhering to common Solidity practices.

o Documentation and Comments: The EIP3669 contract contains good Natspec
documentation, explaining the purpose of functions and parameters. The
VestedlLock and GreenMintingToken contracts, however, lack Natspec comments.
Inline comments are used sparingly. Coinspect considers that adding
comprehensive Natspec documentation to all public and external functions
would significantly improve the clarity and maintainability of the codebase.

o Clarity and Structure: The code is well-organized, and variable names are
descriptive. The use of custom errors (e.g., EIP3009_AuthorizationExpired)
instead of require strings is a modern and gas-efficient practice.

e Best Practices: The contracts extend libraries from OpenZeppelin, a widely
audited and secure source. The checks-effects-interactions pattern is correctly
implemented in VestedLock.claimVestedTokens, where the state
(claimedVestedAmount) is updated before the external call (token.transfer),
mitigating reentrancy risks. The use of an immutable DENOMINATOR for
percentage calculations is a safe and standard approach for handling fractional
arithmetic.

© Coinspect 2025 9/30

5. Detailed Findings

GRM-01

Funds are permanently locked after vesting
schedule completes

Status Ri?k
Solved High
v
Impact
High
R?solution II__liIE;Ii‘r‘wood
Fixed
Location

mint-token/contracts/VestedLock.sol

Description

The contract becomes completely unusable and all remaining funds are
permanently locked due to an array out-of-bounds vulnerability in the
availableVestedTokens() function.

The contract implements a time-based vesting mechanism where the
claimingPercentsSchedule array represents different time periods during which

© Coinspect 2025 10/30

specific percentages of tokens become available for claiming. Each element
in the array corresponds to a vesting stage and the secPerStage parameter
defines the duration of each stage. The contract calculates the current stage
based on the elapsed time since unvestingStartTimestamp to determine how
much of the vesting schedule has unlocked.

When block.timestamp reaches or exceeds the expected end of the vesting
schedule, the calculated stage value will exceed the length of the
claimingPercentsSchedule array.

When the loop attempts to access claimingPercentsSchedule[i] where i >=
claimingPercentsSchedule.length, it triggers an array out-of-bounds error,
causing the transaction to revert.

function availableVestedTokens() public view returns (uint256) {
/...
uint256 stage = ((block.timestamp - unvestingStartTimestamp) /
secPerStage) + 1;
uint256 availablePercents = 0;

for (uint i = 8; i < stage; i++) {
availablePercents += claimingPercentsSchedule[i];
}

7o

Once the vesting period is complete and stage exceeds the array length, any
call to availableVestedTokens() will revert. Since claimVestedTokens() depends
on availableVestedTokens(), it also becomes unusable. This creates a
permanent denial of service where remaining tokens become locked in the
contract and there is no recovery mechanism in place.

Coinspect considers this issue to have a high likelihood as it will inevitably
occur for any contract that remains active beyond its intended vesting
schedule. The impact is high as it results in permanent fund loss.

Recommendation

Ensure that the stage value used in the loop is the minimum between the
calculated stage value and claimingPercentsSchedule.length to prevent array
out-of-bounds access.

Status

Fixed on commit 7db8644fb463abd435b78645ee163c3ce2f9a626.

© Coinspect 2025 11/30

A boundary check was added to prevent stage from exceeding
claimingPercentsSchedule.length. When the vesting schedule is complete, the
function now returns leftVestedAmount instead.

Proof of concept

The following test demonstrates the vulnerability using a 2-stage vesting
schedule (20%, 80%):

import { expect } from "chai";
import hre, { ethers } from "hardhat"”;

describe("VestedLock Array Out-of-Bounds PoC", function () {
it("Vesting reverts when accessing beyond vesting schedule", async ()
:>{

const [deployer, vestingAccount] = await hre.ethers.getSigners();

// Deploy contracts

const GreenMintingToken = await
hre.ethers.getContractFactory("GreenMintingToken");

const VestedLock = await
hre.ethers.getContractFactory("VestedLock");

const vestedAmount = BigInt(100000);
const greenMintingToken = await GreenMintingToken.deploy([], [],
vestedAmount) ;

// Create SHORT vesting schedule: only 2 stages (20%, 80%)
const claimingPercentsSchedule = [2000, 8000];
const secPerStage = 10;

const vestedLock = await VestedLock.deploy(
vestingAccount,
secPerStage,
claimingPercentsSchedule,
(await ethers.provider.getBlock("latest"))!.timestamp,
greenMintingToken

)

await greenMintingToken.transfer(vestedLock, vestedAmount);

console.log("Schedule length:", claimingPercentsSchedule.length,
"stages");
console.log("Schedule:", claimingPercentsSchedule);

// Stage 1 & 2: Normal operation ¢

await hre.network.provider.send("evm_increaseTime", [1]);
await hre.network.provider.send("evm_mine");

let available = await vestedLock.availableVestedTokens();
console.log("Stage 1 available:", available.toString());

await hre.network.provider.send("evm_increaseTime", [secPerStage]);
await hre.network.provider.send("evm_mine");

available = await vestedlLock.availableVestedTokens();
console.log("Stage 2 available:", available.toString());

© Coinspect 2025 12 /30

// Stage 3: VULNERABILITY TRIGGERED X

console.log("\nTrigger vulnerability: Advancing to stage 3...");
await hre.network.provider.send("evm_increaseTime", [secPerStage]);
await hre.network.provider.send("evm_mine");

// Test that availableVestedTokens() reverts
let availableTokensReverted = false;

try {
await vestedlLock.availableVestedTokens();

} catch (error: any) {
console.log("« availableVestedTokens() reverted:",

error.message.includes("6x32"));
availableTokensReverted = true;

¥

// Test that claimVestedTokens() also reverts
let claimReverted = false;

try {
await vestedlLock.connect(vestingAccount).claimVestedTokens();

} catch (error: any) {
console.log("v claimVestedTokens() reverted:",

error.message.includes("6x32"));
claimReverted = true;

}

// Verify both functions are broken
expect(availableTokensReverted).to.be.true;
expect(claimReverted).to.be.true;

console.log(" Contract unusable after vesting schedule
completes");

1)
1)

Test Output:

VestedLock Array Out-of-Bounds PoC
Schedule length: 2 stages
Schedule: [2000, 86000 |

Stage 1 available: 20060

Stage 2 available: 100000

Trigger vulnerability: Advancing to stage 3...
«/ availableVestedTokens() reverted: true
« claimVestedTokens() reverted: true
Contract unusable after vesting schedule completes
v Vesting reverts when accessing beyond vesting schedule

The test confirms that once the vesting schedule completes and time
advances beyond the final stage, both availableVestedTokens() and
claimVestedTokens() functions become permanently unusable due to array
out-of-bounds access, leaving all remaining funds permanently locked.

© Coinspect 2025 13/30

GRM-02

Late token supply skews the vesting

schedule
Status Ri§k
Solved High

Impact
High
R luti Lilfelihood
?SO ution ngh
Fixed
Location

mint-token/contracts/VestedLock.sol

Description

The vesting logic in VestedLock incorrectly ties the vesting slope to the
contract's current token balance, allowing the beneficiary to claim a
disproportionate share of tokens when funding occurs late. This behavior
enables early full claims despite only partial vesting time elapsing,
undermining the intended time-based release schedule. The root cause is the
use of a dynamically computed vested amount, which includes tokens
supplied at any time—even after several vesting stages have passed.

In the availableVestedTokens() function:

uint256 fullVestedAmount = token.balanceOf(address(this)) +
claimedVestedAmount;

© Coinspect 2025 14 /30

uint256 availableToClaim = ((fullVestedAmount * availablePercents) /
DENOMINATOR) - claimedVestedAmount;

The value of fullvestedAmount reflects the current token balance and does not
distinguish when tokens were supplied. If tokens are deposited after some
vesting stages have elapsed, the availablePercents will include past stages,
and the newly supplied tokens will be considered fully vestable as if they had
been present since the beginning.

For example, with a 3-stage schedule of [3600, 2000, 5600] and secPerStage =
10, if the contract is funded after 20 seconds (two full stages elapsed) with
100,000 tokens, the function will compute:

availablePercents = 3000 + 2000 + 5000 = 10000; // due to +1 in stage

calculation
fullVestedAmount = 100000;
availableToClaim = 100000 * 10000 / 10000 - © = 100000;

The beneficiary will be able to claim 100% of the vested tokens even though
only 20 seconds have passed.

This violates the assumption of a time-locked release and creates an incentive
to delay token funding in order to accelerate access to the full vested
amount.

Coinspect considers the likelihood and impact of this issue to be high, as the
vesting logic can be manipulated (intentionally or inadvertently) by deferring
token funding, resulting in premature access to the full allocation and a
fundamental breach of time-based vesting guarantees.

Recommendation

The total vested amount must be fixed at deployment or first funding and
stored immutably. The availableVestedTokens() function should compute
against this static reference, rather than using the live balance.

Status

Fixed on commit 7db8644fb463abd435b78645ee163c3ce2f9a626.

Added a lockFunds() function that allows the owner to fund the contract only
once, storing the locked amount in leftVestedAmount. The vesting calculation
now uses this fixed amount leftVestedAmount instead of the current token
balance.

© Coinspect 2025 15/30

The lockFunds function should be called before unvestingStartTimestamp to

ensure the vesting schedule works as expected.

On commit 8db99a2139e1e2a9d4b43ee9d66c7bc8501046Fh, the Team modified the
constructor to enforce setting the fullvestedAmount when deploying the smart

contract.

Proof of Concept

The following test shows how users are allowed to prematurely claim their

tokens if they are supplied after the vesting period starts.

it("Vesting slope is altered by late token funding", async () => {

hre.

hre.

const |
deployer,

vestingAccount,
...otherAccounts
] = await hre.ethers.getSigners();

const GreenMintingToken = await
ethers.getContractFactory("GreenMintingToken");
const VestedLock = await
ethers.getContractFactory("VestedLock");

const vestedAmount = BigInt(100_660);
const claimingPercentsSchedule = [3000, 2000, 5000]; // 100%
const secPerStage = 10;

const tokenHolderA
const tokenHolderB

otherAccounts[0];
otherAccounts[1];

const greenMintingToken = await GreenMintingToken.deploy(
[tokenHolderA.address, tokenHolderB.address],
[BigInt(®), BigInt(®)],
vestedAmount

);

const currentBlock = await ethers.provider.getBlock("latest");

const unvestStartTimestamp = currentBlock!.timestamp;

const vestedLock = await VestedLock.deploy(
vestingAccount.address,
secPerStage,
claimingPercentsSchedule,
unvestStartTimestamp,
greenMintingToken

);

console.log(\n Vesting Contract Deployed’);
console.log(" Unvesting starts at:

S${unvestStartTimestamp}) ;

© Coinspect 2025

console.log(" ¥ Stage duration: S{secPerStage}

16 /30

seconds) ;
console.log(" Tokens vested (not yet transferred):
S{vestedAmount});

// Fast forward past 2 full stages
const targetTimestamp = unvestStartTimestamp + 2 * secPerStage;
await mineBlocks(targetTimestamp) ;

const afterMine = await ethers.provider.getBlock("latest");
console.log(\n Time Travel');

console.log(" Current block timestamp:
S{afterMine.timestamp}’);
console.log(" Time since start: S{afterMine.timestamp

- unvestStartTimestamp} seconds’);

// Before funding

const balanceBefore = await greenMintingToken.balanceOf (await
vestedLock.getAddress());

console.log(\n Funding Check');

console.log(" Token balance before funding: ${balanceBefore}’);

// ¢ Fund the contract *after* two vesting stages have passed
await greenMintingToken.transfer(await vestedLock.getAddress(),
vestedAmount) ;

const balanceAfter = await greenMintingToken.balanceOf(await
vestedLock.getAddress());
console.log(" «/ Token balance after funding: ${balanceAfter}’);

// Check available tokens now
const availableNow = await vestedlLock.availableVestedTokens();

const unlockedStages = 3; // This is what the contract thinks due
to stage = ... + 1
const expectedUnlockedStages = 2;
const unlockedPercent = claimingPercentsSchedule
.slice(0@, expectedUnlockedStages)
.reduce((a, b) => a + b, 0);
const expectedClaim = (vestedAmount * BigInt(unlockedPercent)) /
BigInt(10_000);

console.log(\n Slope Debug’);

console.log(" Stages expected unlocked:
${expectedUnlockedStages}) ;

console.log(" Claimed percent (expected): S${unlockedPercent
/ 100}%");

console.log(" Expected unlocked tokens:
${expectedClaim});

console.log(" ! Actual available tokens:
S{availableNow}) ;

console.log(" Mismatch is EXPECTED in this PoC: shows late

funding breaks slope.);

/! Failing on purpose to prove the bug
expect(availableNow).to.equal(expectedClaim); // <- this should
FAIL

// Unreachable

/! Try to claim
await

© Coinspect 2025

17 /30

expect(vestedLock.connect(vestingAccount).claimVestedTokens()).to.not.r
everted;

const received = await
greenMintingToken.balanceOf (vestingAccount.address);
console.log(\n Claim Result’);

console.log(" Tokens claimed: S{received});
console.log(" Should have been:
${expectedClaim}) ;

3.

© Coinspect 2025 18 /30

GRM-03

Off-by-one error in stage calculation
causes premature unlocking

Status Risk .
Solved Medium
A 4
Impact
Medium
: Likelihood
R?somnon High
Fixed
Location

mint-token/contracts/VestedLock.sol

Description

The vesting stage computation introduces an off-by-one error by
incrementing the stage index before any time has elapsed, resulting in
premature unlocking of tokens at the very start of the vesting schedule. This
leads to a misalignment between the intended lock period and the actual
release behavior, where the first tranche becomes available immediately at
unvestingStartTimestamp.

In availableVestedTokens(), the stage is computed as:

uint256 stage = ((block.timestamp - unvestingStartTimestamp) /
secPerStage) + 1;

© Coinspect 2025 19/30

This formula adds 1 to the result of the division, causing the first vesting stage
to be considered completed at the moment vesting begins. For example, if
block.timestamp == unvestingStartTimestamp, the computed stage is 1, which
incorrectly unlocks the first scheduled percentage:

// At timestamp == unvestingStartTimestamp
stage = ((0) / secPerStage) + 1 = 1
// =» availablePercents includes claimingPercentsSchedule[0]

As a result, tokens are partially unlocked even though no time has passed,
which violates typical vesting semantics where the first release is expected
after the first full stage duration.

Coinspect considers the likelihood of this issue to be high and the impact to
be medium, especially in systems that enforce strict vesting timelines. While
the behavior may be unintentionally missed during testing, it will reliably result
in premature token release under production conditions.

Recommendation

Tie the result to the length of the claimingPercentsSchedule array to avoid
out-of-bounds access. If a grace period is desired before the first unlock, it
should be enforced explicitly rather than introduced as a side effect of the
formula.

Status

Fixed.

The Team responded that by design, the first stage of vesting is intended to
unlock immediately when block.timestamp >= unvestingStartTimestamp — that
is, at the beginning of the first interval.

However Coinspect would like to point out that this behavior only works if
the unvestingStartTimestamp is set at least at now + stage duration. Otherwise
users would be able to claim all the tokens at (N°stages - 1) * stage
duration. This has significant impact when the stage duration is long enough,
e.g. a year.

Coinspect made a proof of concept that claims tokens on each stage
showing that the vestingAccount bypasses the need to wait for all periods to
pass.

© Coinspect 2025 20/30

On commit b71e7aef6b8705b23b42e42d5e5f8d06393a3fb7, the Team removed the
off-by-one stage calculation and replaced it with a functionally equivalent
implementation. The Team clarified that this behavior is intentional, as the
vesting schedule is designed to release an
immediately when the schedule starts. The intended release plan was

0ff-by-One Vesting Stage Walkthrough (Logging Only)

Unvesting Start: 1754485618

Total amount: 90000

Stage duration: 10 seconds

Vesting schedule: [3000, 2000, 5000]

Stage 6 Check
Time elapsed since vesting start: 2s
Expected unlocked percent: 0%
Expected unlocked amount: ©
Actual available amount: 27000

Stage 1 Check
Time elapsed since vesting start: 10s
Expected unlocked percent: 306%
Expected unlocked amount: 276000
Actual available amount: 45000

Stage 2 Check
Time elapsed since vesting start: 20s
Expected unlocked percent: 56%
Expected unlocked amount: 45000
Actual available amount: 90000
All tokens are expected only after 30s

But full unlock occurs after only 20s if bug is present

provided as follows:

Available at ICO: 30%

coONO b WN =

9

year after ICO: 20%
years after ICO: 10%
years after ICO: 5%
years after ICO: 5%
years after ICO: 5%
years after ICO: 5%
years after ICO: 5%
years after ICO: 5%
years after ICO: 5%

10 years after ICO: 2.5%
11 years after ICO: 2.5%

Proof of Concept

The following test shows how a user is able to claim the portion of the first
stage immediately after the vesting period starts.

© Coinspect 2025

portion of tokens

21/30

it("Immediately unlocks first vesting stage due to off-by-one
error", async () => {
const |
deployer,

vestingAccount,
...otherAccounts
] = await hre.ethers.getSigners();

const GreenMintingToken = await
hre.ethers.getContractFactory("GreenMintingToken");

const VestedLock = await
hre.ethers.getContractFactory("VestedLock");

const vestedAmount = BigInt(90_660);
const claimingPercentsSchedule = [30600, 2000, 5000]; // total =

100%
const secPerStage = 10;
const tokenHolderA = otherAccounts[0];
const tokenHolderB = otherAccounts[1];
const greenMintingToken = await GreenMintingToken.deploy (
[tokenHolderA.address, tokenHolderB.address],
[BigInt(®), BigInt(®@)],
vestedAmount
¥
const currentBlock = await ethers.provider.getBlock("latest");
const unvestStartTimestamp = currentBlock!.timestamp;
const vestedLock = await VestedlLock.deploy(
vestingAccount.address,
secPerStage,
claimingPercentsSchedule,
unvestStartTimestamp,
greenMintingToken
¥
await greenMintingToken.transfer(await vestedLock.getAddress(),
vestedAmount) ;
console.log("\n Off-by-One PoC: Immediate Unlock Check");
console.log(" Current block timestamp:
S{currentBlock.timestamp}) ;
console.log(" Unvesting start timestamp:
S{unvestStartTimestamp}) ;
console.log(" Time passed:

S{currentBlock.timestamp - unvestStartTimestamp}s’);

const available = await vestedLock.availableVestedTokens();
const expectedFirstStageUnlock = (vestedAmount *
BigInt(claimingPercentsSchedule[0])) / BigInt(10_000);

console.log(" Expected unlocked tokens (should be 0): 87);
console.log(" ! Actual unlocked tokens:

S{available});
console.log(" If actual > @8, the first vesting stage is

© Coinspect 2025 22 /30

incorrectly active immediately.);

expect(available).to.equal(@n);
1)

© Coinspect 2025 23/30

GRM-04

Missing constructor validation can lead to
funds lock and vesting errors

Status Risk .
Solved Medium

v

Impact
High
Resolution Likelihood
. Low
Fixed
Location

mint-token/contracts/VestedLock.sol

Description

The constructor fails to validate critical parameters, allowing deployment of
contracts with invalid vesting schedules that can result in permanent fund
locks or incorrect vesting behavior.

The constructor accepts the _claimingPercentsSchedule array without
performing essential validations.

It does not check if _claimingPercentsSchedule is empty. An empty schedule
would cause immediate array out-of-bounds errors when
availableVestedTokens() is called, as the function will always calculate stage
>= 1 but attempt to access non-existent array elements.

It does not verify that the sum of all percentages in _claimingPercentsSchedule
equals DENOMINATOR (10000), which represents 100%. This can lead to two

© Coinspect 2025 24 /30

problematic scenarios: - Under-allocation: if the sum is less than 10000, users
will never be able to claim their full token allocation, leaving funds
permanently locked in the contract - Over-allocation: if the sum exceeds
10000, the contract may attempt to distribute more than 100% of the tokens,
causing it to revert due to insufficient balance

Recommendation

Add proper validation in the constructor to check the
_claimingPercentsSchedule array is not empty and the sum of all percentages
equals exactly DENOMINATOR (10,000).

Status

o Partially fixed on commit 261dc90a34c6cha46802c3b02118d308047233b6.

Added validation to ensure claimingPercentsSchedule is not empty. However,
validation to ensure percentages sum to exactly 10000 (100%) was not
implemented. Manual verification of the percentage sum is advised during
deployment.

¢ Fixed on commit 8db99a2139e1e2a9d4b43ee9d66c7bc8501046h.

© Coinspect 2025 25/30

GRM-05

Missing zero address checks in
constructor can break contract

functionality
Status Risk
Solved None
v
Impact
Recommendation
Resolution Likelihood
Fixed -
Location

mint-token/contracts/VestedLock.sol

Description

Missing zero address checks in the constructor can result in a deployed
contract with broken functionality that cannot be recovered without
redeployment.

The constructor accepts _vestingAccount and tokenAddress parameters
without validating they are not zero addresses. If _vestingAccount is set to
address(0) during deploymentthe claimVestedTokens() function will
permanently fail since msg.sender == vestingAccount will never be true for
address(0), making all vested tokens permanently inaccessible. If tokenAddress
is set to address(0) all token operations will fail, leaving the contract
completely non-functional as it cannot interact with the ERC20 token.

© Coinspect 2025 26 /30

Recommendation

Add zero address validation in the constructor for both _vestingAccount and
tokenAddress.

Status

Fixed on commit 7db8644fb463abd435b78645ee163c3ce2f9a626.

© Coinspect 2025 27 /30

GRM-06

Unchecked token transfer can lead to silent
failures and accounting inconsistencies

Status Risk
Solved None
v
Impact
Recommendation
Resolution Likelihood
Fixed -
Location

mint-token/contracts/VestedLock.sol

Description

The claimVestedTokens() function performs an unchecked ERC20 transfer that
may cause issues with non-standard ERC20 tokens that return false on failure
instead of reverting.

While the current token implementation reverts on transfer failure, if the
contract is deployed with a token that does not revert, failed transfers would
result in accounting mismatch where the contract's internal state is updated
as if the transfer succeeded, but no tokens are actually transferred. This leads
to reduced claimable amounts in future calculations based on the incorrectly
updated claimedVestedAmount, and silent failure with no indication that the
transfer failed.

© Coinspect 2025 28 /30

Recommendation

Use OpenZeppelin's SafeERC20 library or check the return value of the transfer
function to ensure transfers succeed.

Status

Fixed on commit 7db8644fb463abd435b78645ee163c3ce2f9a626.

Added OpenZeppelin's SafeERC20 library and replaced the unchecked
token.transfer() with token.safeTransfer().

© Coinspect 2025 29/30

6. Disclaimer

The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

© Coinspect 2025 30/30

